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Kennett-Fogg, Ruth D. (Ph.D., Electrical Engineering)
Automatic Layout of Integrated-Optics Time-of-Flight Circuits

Thesis directed by Professor Harry F. Jordan

This work describes the architecture and algorithms used in the com-
puter-aided design tool developed for the automatic layout of integrated-optic,
time-of-flight circuit designs. This is similar to the layout of electronic VLSI
circuits, where total wire length and chip area minimization are the major goals.
Likewise, total wire length and chip area minimization are also the goals in
the layout of time-of-flight circuits. However, there are two major differences
between the layout of time of flight circuits and VLSI circuits. First, the
interconnection lengths of time-of-flight designs are exactly specified in order to
achieve the necessary delays for signal synchronization. Secondly, the switching
elements are 120 times longer than they are wide. This highly astigmatic aspect
ratio causes severe constraints on how and where the switches are placed. The
assumed development of integrated corner turning mirrors allows the use of a
parallel, row-based device placement architecture and a rectangular, fixed-grid
track system for the connecting paths. The layout process proceeds in two
steps. The first step involves the use of a partial circuit graph representation
to place the elements in rows, oriented in the direction of the signal flow. After
iterative improvement of the placement, the second step proceeds with the
routing of the connecting paths. The main problem in the automatic layout of
time-of-flight circuits is achieving the correct path lengths without overlapping
previously routed paths. This problem is solved by taking advantage of a
certain degree of variability present in each path, allowing the use of simple

heuristics to circumvent previously routed paths.
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CHAPTER 1

INTRODUCTION

The recent design [1] and demonstration [2] of a discrete, stored pro-
gram optical computer (SPOC) by the Optoelectronic Computing Systems
Center at the University of Colorado, has motivated the development of an
integrated version of the computer. Instead of using flip flops for synchro-
nization, the sub-circuits of SPOC rely on the delay time or ”time-of-flight”
of the light in the connections. One of the first steps to achieving an inte-
grated time-of-flight circuit, is to develop a CAD tool for the layout of the
circuit components and connections. This dissertation describes the models
and algorithms used by the automatic layout tool developed for the layout of
integrated-optic, time-of-flight circuits.

The rest of this chapter describes time-of-flight circuits and related
work in the development of VLSI layout tools. Chapter Two outlines the sys-
tem and device models used in the tool. Chapter Three describes the theory
that supports the placement and routing algorithms. The details of the algo-
rithms are described in Chapter Four. The algorithms are put to test and the
results presented in Chapter Five. Finally, Chapter Six describes how the tool

is successful and suggests further work for future improvements.

1.1 Background
SPOC was designed [1] and implemented [2][3] using discrete LiNbO3

electro-optic, directional coupler switches and fixed ratio couplers that are used




as splitters, and combiners. Optical fiber is used for both the interconnections
and the delay line memory. The entire system fits onto a large table. A much
smaller system can be achieved by integrating the circuit elements and their
interconnections onto a single wafer of LtNbO3; and keeping the fiber-optic
delay line memory off-chip. The current design tool, XHATCH [4], allows the
designer to design and simulate an electro-optic time-of-flight circuit, but, it
does not provide a layout capability. Therefore, a tool is needed to assist
the designer in the layout of integrated electro-optic components onto a two-
dimensional substrate of LiNbO;.

The design and layout of integrated-optic, time-of-flight circuits is
similar to the design and layout of electronic VLSI circuits. Typically, when
an electronic integrated circuit is designed, the designer first creates a symbolic
logic diagram of the circuit, which is simulated to verify the circuit function.
Once the capability of the circuit is verified, the designer uses a graphical layout
tool to draw the masks to be used during the fabrication of the circuit. During
layout, design rule checking is done continuously. This helps the designer stay
within the constraints dictated by the fabrication technology.

The layout tool that has been built is similar to a VLSI circuit layout
tool with the major exception being the algorithms used and the rules observed
during design rule checking. As a consequence of using time-of-flight design,
each connection of an integrated opto-electronic circuit must have a particular
path length. This is the major difference between the time-of-flight layout tool
and the VLSI layout tool.

The design of the time-of-flight circuit layout tool, like VLSI layout

tools, revolves around two major steps, the placement of the elements and the




routing of the connections. The main questions that are answered in this work
are:

(a) Which switch/coupler placement architecture leads to a routable de-
sign?

(b) Given a particular placement architecture, which device placement al-
gorithm produces the best initial placement?

(c) Which iterative improvement algorithms result in the shortest clock
periods?

(d) Which connecting path architecture is the best?

(e) Given a particular connecting path architecture, which algorithm pro-
duces paths that maintain the desired clock period with the fewest
design rule violations?

(f) What design rule checking is done and how is it accomplished?

(g) How does the correction of design rule violations affect the clock pe-

riod?

1.2 Time-of-Flight Synchronization

All digital computers rely on the synchronization of signals at all
points of interaction. In electronic systems, flip-flops are used to synchronize
the signals. Using integrated-optics, bistable devices are more difficult to fab-
ricate. However, since signal delays depend on the length of the path, it is
possible to do without bistable devices by using a pulsed logic bit stream and
incorporating specific path delays for synchronization. Pulsed logic is a form
of digital logic where the presence of a high pulse represents a logic one and
the absence of a pulse represents a logic zero. Small drifts in timing occurring

in feedback loops can be eliminated by gating a correctly timed clock pulse




into the bit stream in place of the original skewed pulse. Multiples of the
clock period, represented by lumped delays, are incorporated in the design to
achieve sequential circuit operation. An ideal time-of flight design assumes that
all path delays are zero except for the paths with a designated lumped delay.
Synchronization is made possible by calculating the precise length of all signal
paths to ensure that pulsed bit streams arrive at their interaction points simul-
taneously. Pratt, in [5], describes the algorithms that are used to distribute
the ideal lumped delays over all the interconnections, taking into account the
real delays of the elements and the connections. The algorithm implemented
in XHATCH repeatedly applies synchronization preserving transformations to
convert an ideal circuit into a circuit with real distributed delays. In [6], John
Feehrer describes the effects of delay uncertainty on the syncronization of time-
of-flight circuits and suggests the use of clock gates to minimize these effects.

An example of a time-of-flight design is the counter circuit (drawn with the

XHATCH tool) shown in Fig. 1.1.

1.3 Description of the Placement and Routing Problem

The goal of the layout tool is to achieve a synchronized, integrated-
optic, time-of-flight circuit. The clock period can be specified by the user or
the minimum for a particular placement can be determined. This differs from
the goal of VLSI placement which, generally, is to minimize total wire length.

The process of laying out time-of-flight circuits is similar to laying out
VLSI circuits for which many techniques have been developed. The process is
typically split into two interacting phases, placement and routing. In the place-
ment phase, transistors, gates, modules, etc., are placed on a two-dimensional

plane with the goal of minimizing the wire lengths of all the connections in
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Figure 1.1: Time-Of-Flight Counter Design using the XHATCH Design Tool.

the circuit. In the routing phase, connections are drawn to connect elements
together. The success of a particular placement is not known until the routing
is complete. Therefore, the two processes are inherently tied together but rely
on different algorithms.

Automatic placement is difficult because of the extremely complex
problems it must solve [15]. For example, if the wiring is ignored and only
placement is considered, the task is simply one of tiling an area optimally, which
is NP-complete [16]. When routing is added to this task, every proposed cell
placement requires large amounts of time to route. Because of these problems,
placement cannot be done optimally; rather it is done with heuristics that
produce tolerably good results in small amounts of time[15].

There are also several differences between the placement of time-of-
flight design elements and VLSI cells. First, contrary to VLSI designs, in time-

of-flight designs, connection lengths are part of the design, and it is possible to




estimate whether or not a connection will be long or short before placement.
Using this estimate, it is possible to arrange the elements with short intercon-
nections closer together than the elements with long interconnections. Once
placed, the ideal lumped delays can be distributed to account for real device
and path delays to achieve synchronization. This produces a set of path lengths
which may or may not be scaled up from their minimum lengths. Therefore, in
time-of-flight design layout, a set of path lengths is estimated before routing.
This differs from VLSI layout where the path lengths are not known till routing
is complete. However, the solution space of feasible delay lengths that satisfy
synchronization constraints is very large, and calculating a set of connection
lengths before routing is equivalent to picking one solution out of many with
no guarantee that the resulting clock period will be minimal.

Secondly, the integrated-optic waveguide connections patterned on
the Lt NbOj; substrate can cross each other with essentially no loss as long as
the crossing angle is greater than 6° [8]. Likewise, they can also cross through
the switching and coupling elements with very little impact. Because of this,
the routing of the integrated optic waveguide connections is simpler than the
routing of VLSI connections which cannot cross at all unless there are multiple
metalization layers.

Thirdly, while routing the integrated-optic connections, it is possible
a path may overlap another previously routed path. To prevent this overlap, a
path may have to be adjusted. But adjusting this one path may affect the delay
of one or more other connections which will then have to be adjusted as well.
When these connections are adjusted, they may end up overlapping another

path which will then have to be corrected for. After several connection length
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Figure 1.2: Orientation Dependent Connection Lengths.
changes and delay redistribution calculations, it may be possible to converge
on a set of routable path lengths, but, there is no guarantee that it will be
optimal in terms of clock speed. As can be seen, due to the interdependencies
of the path delays, the routing of the connections and the avoidance of overlaps
is one of the challenging aspects of the layout problem.

The fourth aspect stems from the fact that the integrated-optic switches
are approximately 120 times longer than they are wide. Due to this long as-
pect ratio, changes in device orientation can produce large variations in the
minimum distances between the elements. As shown in Fig. 1.2, two parallel
switches can have either a short path between them, or a very long horizon-
tal path, depending on the orientation of the switches relative to each other.
Therefore, two elements requiring a long path delay between them can actually

be placed close together provided they are oriented the same.

1.4 Related Research in Placement and Routing

It is difficult to perform time-of-flight design layout without an under-
standing of the major problems and algorithms used in VLSI design layout. A
review of the major placement and routing techniques is presented first. Then,
specific works which tie more directly to the time-of-flight design problem are

described later.




1.4.1 VLSI Placement Placement deals with finding the best
geometric coordinates for all circuit elements. The placement problem has
deservedly gained considerable attention in the literature and there are many
algorithms that produce good results [13]. In most methods, the success of a
particular placement is evaluated according to a cost function based on total
wire length, wiring density, and total area.

The types of algorithms used for placement fall into two categories,
constructive placement and iterative improvement. In a constructive placement
approach, elements are progressively assigned to their places based on a partial
cost, which is the restriction of the cost function to the subnetwork of elements
that have already been placed. Since optimization of this partial cost does not
necessarily lead to the optimization of the global cost, this method is frequently
used to produce an initial placement [16].

Iterative improvement techniques [13] attempt to improve an initial
placement by iteratively producing new, better placements. The chief concern
in the development of iterative improvement techniques is to find a metric for
the cost function that is computationally simple to calculate at each iteration.

There are several evaluation metrics that have been reported in the
literature. One widely used metric is wire length. Since wire length cannot
be measured directly until the connections are routed (a time-consuming job),
there are several methods used to approximate wire length. One method is
to simply calculate the Manhattan distance between the terminals. Other
approaches use the half perimeter of the smallest rectangle enclosing the pins of
the connection [30] or a minimal Steiner tree length [35] [29]. Another method

uses a quadratic form of the square of the distance [17}[18] that produces an




objective function which is simpler to minimize.

(a)

Two popular placement algorithms are:

Min-cut[26]. This algorithm divides the unplaced cells into two until
a tree-structured graph is formed that organizes all cells. The deter-
mination of the min-cut division is based on the wiring between the
cells. The goal of the best min-cut is found from the division of cells
that cuts the fewest wires. It is one method of reducing the size of a
problem by breaking it up into smaller problems, however, it doesn’t
consider cell sizes nor the relative orientation of cells within a group.
Simulated Annealing [27][28][25]. This method consumes large amounts
of time but produces very good results. Given an initial placement the
annealer makes changes in the positions of the cells and evaluates the
results according to a cost function based on wire length. If the cost
increases, then the change may or may not be accepted depending on
the value of a temperature dependent annealing schedule. If the cost
decreases, the change is always accepted. Simulated annealing has been
applied to a wide variety of optimization problems and very good re-
sults have been reported for the standard cell placement problem [21].
In [22] simulated annealing and a hierarchical approach are used for
row-based placement, improving an earlier version reported in[23].

1.4.2 VLSI Routing Techniques The routing step forms the

interconnecting paths between the placed circuit elements. Routing algorithms

can be categorized into one of three types, channel routing, maze routing, or

line search routing [24].

Channel routing has been the main routing algorithm for standard
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cells for many years. Each channel consists of several parallel tracks into which
the segments of the connecting paths can be routed. It is particularly suited
for routing connections where the points to be connected are in parallel rows
[19]. Multiple layers of connections result when horizontal tracks are formed
on one layer and vertical tracks on another. Since the width of each channel
and the number of tracks in each channel is variable, a complete routing is
guaranteed.

There are several versions of the maze routing technique. All of them
find paths around obstacles by hitting the obstacle and then making a decision
to turn left or right. This method may lead to an inefficient routing or it may
fail to find a routing at all [24].

The line-search algorithm finds a connection through a maze of ob-
structions without using a grid. It runs vertical and horizontal expansion lines
from the two points to be connected. If either line encounters an obstacle, the
router draws a perpendicular line to the original line in order to pass by the
obstacle. Two expanding nets are created from both points. The desired con-
nection is created when two expansion lines, one from either point, intersect.
This method is not optimal since it does not always yield the shortest path.

1.4.3 Research on Timing Driven Layout of VLSI Circuits
With the increase in VLSI circuit sizes and the decrease in feature sizes, the
overall performance of integrated circuits will be increasingly affected by signal
propagation time through the interconnects. This has caused increased activity
in areas such as timing driven placement, timing driven routing, and clock skew
minimization. Also, the incorporation of speed enhancing techniques in VLSI

designs, such as wave pipelining, dictates the need for greater timing awareness
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in the circuit layout. How each of these areas relates to, but does not solve the
time-of-flight layout problem, will be described below.

1.4.4 Timing Driven Placement The work in timing driven
placement centers around the efficient use of timing information to form lay-
outs that don’t violate the timing constraints of the design specification. Unlike
time-of-flight designs, the path delays are not prespecified, so the main diffi-
culty is to derive accurate timing information without spending an enormous
time estimating path delays. Also, layout tools can only approximate the rout-
ing consequences of a particular placement, so a degree of uncertainty is intro-
duced both in the early timing analysis and in the placement system’s assess-
ment of whether the design will satisfy the timing constraints after routing[31].
Several authors [31][32][34] determine, prior to the layout step, a set of feasible
net lengths that satisfy timing requirements. Each of these lengths has a lower
and an upper bound. The placement algorithm then seeks a solution which
keeps the net lengths within these bounds. For example, in [31] an iterative
refinement approach is used. The algorithm starts with an initial global place-
ment without the use of timing information, after which the design’s timing
performance is estimated. A subsequent timing analysis step identifies critical
paths which are used to calculate timing margins for every path in the circuit.
This information is then used to bias the next iteration of the placement step.
In this way, the most accurate placement and routing information is used in
calculating timing information for the subsequent layout step. The process
ends when all timing constraints have been satisfied.

Another approach that establishes upper and lower bounds on path
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lengths for high-speed ECL masterslice LSI’s is described in [32]. In this ap-
proach, the upper and lower bounds on path lengths for the placement program
are calculated from constraints based on several factors such as wire length to
minimize clock skew, data path delay, and the resistance of wired-OR. logic.
An initial placement is performed which uses two-dimensional clustering aug-
mented for optimizing delay. Iterative improvement is then used to adjust
each cell location in order to minimize path delays. In each iteration, all path
delays are calculated. This process continues until no paths that violate the
delay bounds are found.

A third approach in [34] also develops bounds on delays which are
converted into length limits and then used as constraints during the placement
of the elements on the chip. A zero-slack algorithm is used which traces paths
in a circuit and attempts to change wire lengths in order to remove excess slack.
The main goal of this approach is to reduce the number of timing violations,
therefore it is not necessary that length bounds be satisfied by every path after
placement. This differs from integrated, time-of-flight circuit design layout
where timing violations cannot be tolerated.

Instead of estimating the bounds before layout, the following methods
calculate bounds on the path delays during the layout. In [30] a hierarchical
approach is used where at each level of the hierarchy a new set of delay goals
is determined and translated into net weights. The dynamically changing net
weights change the objective function, which is used to minimize the distance
between circuit elements. A constructive approach described in [33] uses an

adaptive successive approximation technique, which checks timing constraints
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each time a new cell is added to the partial placement. This incremental check-
ing procedure requires less effort than checking constraints repetitively for the
whole design. In [29] the path-oriented timing-driven placement problem is
transformed into a Lagrange problem and solved using a piecewise linear resis-
tive network method. The problem with these approaches is that placement
algorithms are not well suited to honor bounds on net lengths [30]. This is
similar to the time-of-flight design layout problem where small changes in the
placement can have a large effect on the routing. However, in VLSI layouts,
path lengths just need to be within their upper and lower bounds. Timing
constraints may still be met if a few paths are not within their bounds. This
is not the case in time-of-flight design where all the path lengths must satisfy
a set of linear equations with high precision.

1.4.5 Timing Driven Routing In general, routing plays a sec-
ondary role in timing driven layout because placement has a more dominant
effect than routing on the topography of the layout. In [35] the global rout-
ing problem includes estimates of delay limits which are used in the routing
and re-routing process to satisfy timing constraints as well as to minimize the
routing area. As with the VLSI placement algorithms, the goal is to meet the
delay bounds dictated by the timing constraints rather than meeting specific
delays as in time-of-flight designs.

1.4.6  Zero Clock Skew Routing  The goal in clock net routing
is to minimize the clock skew, which is defined as the maximum difference
among the delays from the source node, the clock, to a sink node, the clock
pin on a latch. There are several different approaches [36] [40] whose goal is to

achieve zero skew by equalizing the lengths of the paths from the source to the
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sinks. This problem is similar to our problem, since we both wish to ensure the
concurrent arrival of signals at their destinations. If all time-of-flight designs
resulted in circuits with perfect tree graph structures, then we would have an
identical problem. However, time-of-flight circuits contain feedforward paths,
reconvergent paths, and feedback paths, which make the problem more difficult
than the clock tree routing problem.

An early approach [37] to minimize the clock skew develops a tree
delay model where the path distances from the root node to each of the leaf
nodes are equal. This delay model is then used to determine the optimal
number and placement of buffers within the tree so the clock delay is minimized.
A popular clock distribution network is the H-tree [41].

In [39] zero clock skew routing is achieved by equalizing all paths
from the root of the clock tree to the leaf nodes. The length of each path is
calculated by summing the estimated Manhattan distance between the nodes
of the path. The algorithm for routing these links depends on the calculation
of a balance point on the wire which will become the root where two sub-trees
are merged to form a new single sub-tree. Another algorithm for the routing
of a clock net for zero skew hierarchically builds the clock tree by merging two
subtrees at each level [38].

1.4.7 Wave Pipelining  Another area where path length induced
timing is critical is in wave pipelining. In wave pipelining the combinational
path delays between clocked logic must be all equal [42] [43]. However, as in
VLSI layout, it is difficult to estimate the path delays until the circuit has been
laid out. Wong [42] demonstrated the wave pipelining concept on a 63-bit pop-

ulation counter. Where path length constraints were not met after the initial
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layout, buffers were added and power levels on gates were adjusted. Even with
these modifications, the paths varied more than 10 percent from each other and
still the circuit functioned properly at 2-3 times the normal clock frequency.
Joy and Ciesielski [44] have developed a layout method for optimizing
the placement of cells in wave-pipelined designs. Their method uses a linear
program whose constraints relate the clock period to the maximum and min-
imum logic path delays. The linear program is run iteratively. During each
iteration through the linear program, new constraints become critical due to
previous adjustments which increase or decrease path delay. Delay cells are
used to increase path delay when desired path lengths can’t be fit.
Comparing this to time-of-flight design layout, unless we can find an
optical delay cell which is simpler and less lossy than a length of waveguide,
our layout problem will still be driven by the specified lengths of the intercon-

nections.




CHAPTER 2
THE SYSTEM AND DEVICE DESCRIPTIONS AND MODELS

2.1 Introduction

In this chapter the entire integrated, electro-optic system, as it is
envisioned, is described. This is followed by descriptions of the chip and device
models used in the layout tool. Finally, some of the main data structures used

in the tool are described as well.

2.2 System Description and Chip Model

As mentioned before, the components of time-of-flight circuits consist
of electro-optic switches, fixed-ratio couplers, splitters, and combiners which
will be integrated in LiNbO; as described in [45] and shown in Fig. 2.1.
Optical waveguides connect the integrated-optic circuit elements and also serve
as memory registers. Main memory, as in the discrete version, is implemented
off-chip using fiber delay lines. The electronics necessary to drive the electro-
optic switches, such as the electrode driver circuitry, the photo-detector and
the amplifier, are integrated onto a separate semiconductor chip. This chip
will be flip-chip bonded to the L:NbO; chip using a solder bump alignment
technique described in [7]. The solder provides the electrical connections from
the drivers to the electrodes, while surface gratings in the LiNbO3 couple light
from the waveguides to photo-detectors. The system clock signal is provided
by an external semiconductor laser which generates pulses of the correct duty

cycle at the desired bit rate.
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Figure 2.1. The System Design [45]. Note: the element in the upper right
corner of the lower chip is a switch.

2.2.1 Switch Description and Model A switch is a five termi-
nal (two inputs, two outputs and a control input) device that models a LiNbO3
optical directional coupler and its associated drive electronics as shown in Fig.
2.2. The switch has two states, known as the “cross” state and the “bar” state.
The cross state occurs when the control input is below a specified threshold
level. In this state, the optical signal flows to the diagonally opposite output.
When the control input signal is above the threshold level the bar state occurs,
where the signal flows directly to the corresponding output.

Each switch or directional coupler is fabricated using the proton ex-
change or titanium in-diffusion process in LiNbOs. A switch is formed by
bringing two waveguides together allowing the light to couple between the
electrodes. The interaction length of the coupling region is dependent on the

strength of the field under the electrodes. The stronger the field, the shorter
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Figure 2.2: Graphical and geometrical models of a switch.

the interaction length. For a voltage of about 4.5 volts, the interaction length
is approximately 10 mm [3]. Approximately 1 mm is needed on either end for
the waveguides to converge and diverge with a radius of curvature of 10 mm
(necessary for negligible loss [8]) into and out of the switch interaction region.
Therefore, the total length of the switch is approximately 12 mm. Assuming
the width of the electrode structure is approximately 0.1 mm results in a 140:1
aspect ratio which limits the number of suitable placement architectures, as
will be discussed later. The entire switch takes approximately 0.012 cm?, for
a packing density of 83 switches per cm?.

As mentioned before, a third input provides the control signal to
drive the switch electrodes. This will be achieved by extending the waveguide
which carries the control signal input to a grating coupler which will direct the
light to a photo-diode detector on the semi-conductor chip. After detection,
amplification, and pulse stretching, the driver signal is connected back to the
switch electrode structure via a solder bump.

The switches have several variable parameters as shown in Fig. 2.2.
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Each of the model parameters can be changed by the user if the technology
changes. All the device dimensions are listed in terms of a scalable unit ),
whose default value is 1 micron, which produces realistic values for the device
parameters. The maximum resolution of the layout window is also 1 . The
origin of the graphical layout diagram is the upper left corner with the x-
coordinates increasing to the right and y-coordinates increasing downward.
Also, the graphical representation is scalable by the user in both the x and
y dimensions. The default scale factors are x/30 and y/5, i.e., each pixel
represents 30 along the x-axis and 5) along the y-axis.

Each of the switch parameters and their standard values are described
below:

o Electrode Width (W,): This is the width of the metal electrode over
the coupling region whose default value is 30 A. To prevent the electric
field from affecting the light in nearby connecting paths, the electrode
should not extend beyond the lateral offset (described below) of the
diverging waveguides.

¢ Electrode Length (L.): This is the length of the metal electrode over
the coupling region whose default value is 10,000 A.

¢ Long Interaction Length (L;): This is the region under the electrodes
where the light couples. The length is the same length as the electrode,
whose default value is 10,000 X.

e Radius of Curvature (R): The radius of curvature determines how
much bending loss the light in the waveguide will experience. For

negligible loss [8], this value should be greater than 10,000 \.
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o Lateral Offset(0): This parameter depends on the amount of separa-
tion needed to prevent the light from coupling between the waveguides.
This value is measured from the center of the region between the waveg-
uides to the edge of the upper (or lower) curved waveguide. A nominal
value is 30 A.

o Transition Length (L¢): The transition length depends on the radius
of curvature, R, and the lateral offset, O, in the following relationship

[8]:
L, = /(2RO - 0?).

Given a particular lateral offset, the user may specify a transition
length and thus derive the radius of curvature or the user may specify
a radius of curvature and derive the transition length.

e Waveguide Width (W,,): This is the standard waveguide width, which
in practice is between 5 and 10 A.

o Waveguide Spacing (W,): The spacing of the waveguides in the cou-
pling region needs to be at most the width of a waveguide. The default
value is 10 A.

For placement purposes, the most important parameters are the length
and width of the switch. Assuming that the electrodes do not extend beyond
the lateral offset, L, of the outgoing and incoming waveguides, then the device
is modeled by a rectangle as shown in Fig. 2.2, whose length and width are
respectively,

length = Ly + 2L,

width = 20 + 2W,, + W,.
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2.2.2 Coupler Description and Model The coupler device,
like the switch, has two inputs and two outputs. But, unlike the switch, it
does not have a control input. When light enters only one input, the power
is split between both outputs. Likewise, when light enters both inputs, the
signals are coupled with an overall 3dB power loss. Therefore, depending on
how it is connected, the coupler can act as a signal splitter or a combiner.

The coupler is fabricated in much the same way as the switch with two
exceptions. First, since there is no electronic control, no electrode is required
over the coupler. Also, the length of the coupling region, called the interaction
length, is much shorter than that of the switch if the two mode interference
(TMI) form of the coupler is used [8]. Like the switch, the transition length
required for the waveguides to converge into and diverge out of the coupler
depends on the radius of curvature and the lateral offset. The resulting length
of the coupler is typically less than half the length of a switch.

The coupler parameters as shown in Fig. 2.3 are listed below :

e Short Interaction Length (L,,): 200 A.

¢ Radius of Curvature (R): 10,000 ).

e Lateral Offset (O): 30 A

e Transition Length (L;): The transition length is calculated from the
radius of curvature and lateral offset in the same way as for the switch.

o Waveguide Width (W,,): This is the standard waveguide width.

e Waveguide Spacing (W,): For the TMI mode the waveguides come
together with no space between them.

Again, for placement purposes the most important information is the

length and width of the coupler. This is modeled by a rectangle as shown in
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Figure 2.3: Graphical and geometrical models of a coupler .
Fig. 2.3, whose length and width are respectively,

length = L;, + 2L,

width = 20 + 2W,,.

2.2.3 Splitter and Combiner Description and Model The
splitter device has one input and two outputs. A signal at its input is split
between its two outputs where each output signal is half the power of the input
signal. The combiner device has two inputs and one output. Signals on both
inputs are summed into one output with an overall power loss of 3 dB. Both
are special cases of the coupler which is described above. The parameters, as
shown in Fig. 2.4, are the same as for the coupler. The splitter and combiner
are both modeled by a rectangle, as shown in Fig. 2.4, whose length and width
are respectively,

length = L, + L,
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Figure 2.4: Graphical and geometrical models of a splitter or a combiner.

and

width = 20 + 2W,,.

Whether the device functions as a splitter or combiner depends on its

orientation with respect to the signal flow through the device.

2.3 Waveguide and Corner Turning Mirror Description

The connections between the switches, couplers, splitters, and com-
biners will be formed from proton exchanged lithium niobate PE : LiNbOj;
waveguides. These waveguides can intersect with negligible crosstalk, provided
the angle formed is greater than 6° [8]. As with the diverging and converg-
ing ends of the switches, the waveguide radius of curvature must be at least
10 mm for negligible bend loss. With this limitation, a full turn will take an
area of 4cm?, or the entire chip area. This is something that was avoided by

anticipating the continued development of corner turning mirrors.
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Corner mirrors in GaAs/AlGaAs [9] and in InP [10] have been demon-
strated. Using laser ablation techniques in PE : LiNbO; it may be possible to
form 45° turring mirrors to bend the waveguides over a sharp 90° turn. This
technique is still under development [11] and the final dimensions of the turn-
ing mirror are unknown. Other techniques such as chemically assisted etching
[12], or the formation of Bragg grating mirrors using proton exchange methods
[11] are heing investigated.

Even though the actual implementation is uncertain at this time, it
is possible to make some assumptions and model the corner turning mirror as
a square whose width, height and orientation are described below.

e Corner Width: The width of the region containing the actual turning
mechanism. This parameter is expected be at least the width of a
waveguide plus the minimum guide spacing. The default value is 30 .

o Corner Height: This is the same as above. Note, in the event that cor-
ner turning mirrors turn out to be larger than assumed, then the spac-
ing between parallel connecting paths will also need to be increased.

The direction of the in-coming and out-going path segments deter-
mines the orientation of each mirror as shown in Fig. 2.5. For each orientation,
the directions of the incoming path and outgoing segments correspond to one
of two cases. These are listed as follows:

e Southwest: Increasing y followed by increasing x or, decreasing x fol-
lowed by decreasing y.

o Southeast: Increasing y followed by decreasing x or, increasing x fol-

lowed by decreasing y.
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Figure 2.5: Geometrical model of a corner turning mirror.

o Northeast: Decreasing y followed by decreasing x or, increasing x fol-
lowed by increasing y.
o Northwest: Decreasing y followed by increasing x or, decreasing x fol-

lowed by increasing y.

2.4 Row Placement Architecture

Due to the highly astigmatic aspect ratio of the switches, the problem
of choosing a suitable placement architecture is like choosing the best way to
arrange uncooked spaghetti on a tray, where no piece may touch another. If
they are not arranged in parallel, the space on the tray will be inefficiently used.
Likewise, integrated-optic switches may not touch or cross. Also, to minimize
the clock period, the path lengths between elements must be minimal. As with
the spaghetti on the tray, the most practical solution is place the elements in
parallel rows.

2.4.1 Possible Row Configurations  There are several row con-
figurations, depending on the number of elements per row and their relative

positions such as:
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Figure 2.6: Place one element per row.

Place only one device per row as shown in Fig. 2.6. The advantage
of this architecture is that the algorithm to place the devices is very
simple. However, since every connection must bend 180 degrees to
complete its path, at least two corner turning mirrors are required
per connection. It is likely that the corner turning mirrors will be
imperfect reflectors, therefore, this option will be more lossy than a row
configuration which does not require a pair of corner turning mirrors
for each connection. Also, since the couplers, splitters, and combiners
are so much shorter than switches, placing one of these elements per
row is inefficient in terms of area usage.

Place the elements in a fixed grid as shown in Fig. 2.7. This archi-
tecture forms two parallel banks of elements, one for the long switches
and the other for the shorter couplers, splitters, and combiners. In
this configuration, not every connection will need to bend, so corner
turning mirrors are not always required. This allows for short intra-
row connections, however, the fixed locations of the elements is not
conducive to achieving a short clock period.

Place at most one long and one short device, or two or three short de-

vices per row, each in one of several discrete positions as shown in Fig.
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Figure 2.7: Place elements in a grid.

Figure 2.8: Place elements in one of several discrete positions.

2.8. Choosing one of just a few discrete positions simplifies the place-
ment problem. The relative positions of the devices are determined
by the direction of the signal flow in the circuit. As in the previous
option, this option also allows for short, intra-row connections.

Place zero, one, two, or three devices per row, each in one of several
discrete positions. This is the same as above, but a row can be devoid
of elements to allow space for several more horizontal tracks for the
connections.

Place zero, one, two or three devices per row, each in a variable posi-
tion. Instead of placing the elements in one of a few discrete locations,
the devices are placed as close together as possible. The previous two
configurations can be optimized to this configuration by shrinking the
shortest intra-row connections till they are as short as possible.

I have chosen the fourth option as the default row architecture in

order to allow zero, one, two, or three devices in a row, each in one of several
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discrete positions. Each row has a maximum of one switch. It is possible to
place a shorter device such as a coupler, splitter or a combiner on either the
right or left side of the switch. In the event a switch does not occupy a row,
two or three shorter devices can be placed in a row. The spacing between
rows is fixed or can change to accommodate a varying number of tracks (in
the optimal case). With fixed spacing between the rows, it is possible to skip
a row (i.e. not place any elements in it) and use the freed space for additional
horizontal tracks.

Now that the row architecture is chosen, the parameters which affect
the geometry need to be identified and defined. There are two parameters
which affect the row geometry, which are:

(a) Row Spacing. This establishes the spacing between the rows and is
measured from the top of one device row to the top of the next device
row.

(b) Intra-row Device Spacing: This is the spacing between devices in a row.
This value is determined by the maximum number of corner turning
mirrors which could possibly be needed for the connections into and
out of two consecutive elements in a row. The worst case occurs when
a splitter is followed by a switch in the same row. If a,'ll the outputs
of the splitter and all the inputs of the switch are used, then space
for at least five corner turning mirrors (i.e. five tracks) will be needed.
Adding two more tracks allows room for pass through connections. The
resulting 7-track inner vertical channel is shown in Fig. 2.9.

2.4.2 Placement map A two-dimensional array data structure

called the placement map is used to store the device placement information




29

A + Splitter C Switch

» 0—@°

Figure 2.9: Worst case vertical tracks usage between devices.

such as the device position, identification and orientation. Each row of the
array becomes a row in the layout and each column represents one of the
several discrete positions in which the device may be placed. For the default
row configuration, there are three columns in the two-dimensional array. If
one or more additional horizontal channels are needed between rows, then the
desired rows of the placement map can be cleared and the remaining elements

shifted down the desired number of rows.

2.5 Waveguide Channel Model

Since a Manhattan geometry is assumed, the waveguide connections
consist of vertical and horizontal path segments. In order to manage the rout-
ing of the connections, a grid of horizontal and vertical channels is used. Each
channel contains several waveguide tracks. Vertical and horizontal path seg-
ments can cross each other arbitrarily, but connecting them requires a corner
turning mirror. The track width is equal to the waveguide width plus the
waveguide spacing. The maximum number of tracks per channel is a function
of the channel width and the width of the tracks. After the user specifies the
particulars of the geometry, the tracks can be initialized with their correspond-

ing horizontal or vertical pcsition.




30

2.5.1 Horizontal Channels The horizontal waveguide path seg-
ments are routed in tracks in horizontal channels which are formed in and be-
tween the rows of devices and extend through the margins to the border of the
chip as shown in Fig. 2.10. Each channel has a fixed number of tracks. For
example in Fig. 2.10 the channel consists of eight tracks. Three of these tracks
(represented by dashed lines) are used in the device rows and five more fit be-
tween the rows. Each track is wide enough to hold a single waveguide. Note,
one or more segments from different paths can be placed in a single track.

There are three sets of channels:

e Top Channel. This single wide channel contains the tracks which are
formed in the top margin of the chip. The number, Nr, of tracks is
determined by the amount of space between the first row of devices
and the border of the chip. The tracks are numbered from 0 to Ny —1,
starting with 0 closest to the first row of devices.

e Middle Channels. The middle channels are the set of channels which
are formed between the device rows as well as in the device rows.
There are three tracks in each device row, one each for the segments
to the upper, middle and lower terminals of the devices. The number
of tracks, k, between each row is determined by the amount of space
between rows and the width of the waveguide, as well as the required

waveguide spacing. The tracks are numbered from 0 to Nps — 1, where
Ny = (k + 3) * number of rows in placement map.

e Bottom Channel. This is the opposite of the top channel and contains
the tracks which are formed in the bottom of the chip. The number of

tracks, Np, is determined by the amount of space between the last row
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Figure 2.10: Horizontal and vertical tracks.

of devices and the bottom edge of the chip. The tracks are numbered
from 0 to N — 1, starting with 0 closest to the last row of devices.

If more tracks are needed in either top or bottom channels, the chip
area will need to be increased. The user will be notified about the change in
the geometry and be queried if he/she would like to continue with the layout.

2.5.2 Vertical Channels There is also a set of four single ver-
tical channels and a set of random tracks as shown in Fig. 2.10. These are:

o Left Channel. This channel contains the tracks which are formed along
the left margin of the chip. The number of tracks is determined by the
amount of space between the leftmost devices and the left edge of the
chip. The tracks are numbered from 0 to Ni — 1, starting with 0 closest
to the left side of the devices.

o Left-inner Channel. The inner channel consists of a minimum of seven
tracks to allow at most five terminal tracks, i.e. tracks used to feed

into and out of the device terminals, and two pass-through tracks for
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long vertical segments which may span several rows.

o Right-Inner Channel. This is the same as the left-inner channel but on
the right-inner side of the chip .

o Right Channel. This channel contains the tracks which are formed
along the right margin of the chip. The number of tracks is determined
by the amount of space between the rightmost position of the devices
and the right edge of the chip. The tracks are numbered from 0 to
Ng —1, starting with 0 closest to the rightmost position of the devices.

Since connections can cross over devices, vertical tracks are formed
as needed between the vertical channels as shown in Fig. 2.10. The spacing of

these tracks is monitored to prevent overlapping path segments.

2.6 Waveguide Connection Model
Integrated-optic waveguides will form the connections between the
circuit elements. There are two parameters which affect the layout of the
waveguides. These are the:
o Connection Width: This is the width of the connecting waveguide and
1s the same as the width of the guiding regions of the devices. The
default value is 8 A.
e Connection Spacing: This value is measured from the edge of one
connecting waveguide to the edge of the nearest connecting waveguide.
This spacing must be large enough to fit a corner turning mirror and
to prevent light from coupling between the connections.
Several terms are used to describe the various lengths associated with

a connection and its path. These are:
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Minimum Path

L
........ ] Extended Path
L

Extended Path with Additional Slides

Figure 2.11: Path length variability is achieved by using slides.

(a) Minimum length. This is the minimum path length the connection
can have. This value is estimated after device placement and before
running the XHATCH delay distribution algorithm.

(b) Connection length. This is the distributed length calculated using the
XHATCH delay distribution algorithm. This is the length necessary
to achieve circuit synchronization at either a specified clock period or
the minimum clock period for the particular set of estimated lengths.

(c) Slack Length. This is the difference between the distributed connection
length and the minimum length. After each invocation of the XHATCH
delay distribution algorithm, the slack length must be updated.

The success of the routing phase depends on the amount of variability
each path has. To achieve this variability, extendible slides are used as shown
in 2.11. There are basically two types of slides. The first type are the slides
formed by pulling out the vertical segments of the minimum length path like
a rubber-band. The second type are slides which are added to the extended

minimum path.
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2.7 The Chip Geometry
The parameters of the chip geometry are shown in Fig. 2.12 and
described below:

(a) Outer dimensions: The chip width and chip height define the outer
dimensions of the substrate. Both values are initially set at 2 em or
20,000A.

(b) Inside geometry parameters: It is necessary to allow some area between
the chip edge and the devices. The top, bottom, and side margin
regions provide room for this and for the waveguide connections.

(c) Border Width: To prevent handling damage to the circuit, a narrow
border region of one track width is formed along the edge where no
devices or connections can be formed.

(d) Input/Output ports: Within the lower left and right border there exists
a set of ports for the off-chip connections. The number of ports and
their relative spacing is specified by the user.

Note, the chip parameters provide a starting point for the layout
algorithms. If the chip area needs to be increased to complete the routing, the
user will be notified. After routing is complete, the layout tool can provide the

user with the actual chip size.
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CHAPTER 3
THE OVERALL APPROACH FOR AUTOMATIC LAYOUT

As mentioned before, the task of laying out a time-of-flight circuit is
split into two phases, placement and routing. From a placement perspective, let
us assume one switch and one short device will be placed per row. Given there
are N switches there will be N! possible patterns in which the N switches can
be placed. Additionally, each switch can be oriented in one of two directions,
either to the right or to the left. This brings the total number of possible switch
placement patterns to 2V N!. Likewise, if we assume we have k couplers which
also have two orientations and 2N possible positions (either to the left or right

of a switch), the number of possible short element configurations is

2* ¢

2N
At this stage of development, N is on the order of 100 which is small
compared to the millions of electronic devices which are laid out on a single

chip using VLSI tools. Nevertheless, it is still advantageous to reduce the

complexity of the time-of-flight circuit placement and routing problem.

3.1 Time-of-Flight Circuit Representation

In XHATCH, a time-of-flight circuit is represented as a directed circuit
graph G(V, E) where V is the set of vertices representing the elements of the
circuit, and F is the set of edges representing the connections between elements

[46]. For synchronization purposes, the vertices in the graph are treated as
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idealized points of signal interaction and the edges represent directed paths
along which the signals of the system travel. For layout purposes, the vertices
of G are partitioned into 2 sets V; and V, where V] forms the set of long elements,
the switches, and V, is the set of short elements such as the couplers, combiners

and splitters. If an edge e; € E then e; = (v,, v:) where v,,v; € V.
3.1.1 Definitions The following definitions apply for each edge

e; in E:

e M = the set of minimum Manhattan path lengths where m; € M and
m; is the minimum path length for edge e;. If the two endpoints of

edge e; are z,;, Y, and x4, yy then
mi = Ty — Tei| + [Yoi — Yail-

R = the set of required connection lengths calculated using the XHATCH

Distribution algorithm where r; € R is the required length of edge e;.
o S5 = the set of slack lengths where s; € T is the difference between 7,
and m;, 1.e.

S =Ty —m,.

D = the set of drawn interconnection lengths where d; € D is the

drawn waveguide length for edge e;. When all the paths have been
routed and all the conflicts resolved, then for every path, d; = r;. If
there is an edge e; where d; # r;, then the path has not been routed
correctly.

e The edges of the circuit graph are partitioned into two edge sets, one
set Ej for the edges representing the long connections and another
set E, for the edges representing the short connections. Long edges

are 1nitially assumed to be those connections marked with an ideal
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lumped delay and the short edges are without a lumped delay. This is
a reasonable assumption because each lumped delay value is a multiple
of the clock period which is typically greater than the time-of-flight
through the longest element, a switch. Even though not always correct,
the assumption provides a starting point which can be corrected later.
Using the long and short edge designations, it is possible to simplify
the circuit graph as described below.

3.1.2 The Partial Directed Circuit Graph The simpler the
circuit graph, the simpler the placement task. Since the short edges dictate
the relative positions of the elements, the long edges can be removed from
G(V, E) without any deleterious effect on the relative positions of the placed
elements. The resulting graph is called a “partial directed circuit graph” or
PG(V, E) where V is the set of vertices, as before, and E, is the set of short
edges representing the connections without a lumped delay. As before, the
vertices of G can be partitioned into 2 sets V; and V,. If an edge e; € E, then
e; = (v,,v;) where v,,v; € V. The root vertex v, is the device which has an
input from the oscillator. In the event a sub-graph becomes disconnected from
PG(V, E) after removing a long edge, the sub-graph becomes a new PG(V, E)

with its own root vertex v,,.

3.2 Placement Theory
The placement process involves three steps which are summarized
below.
(a) The first step is to form the initial placement of the devices from the
initial PG(V, E) and estimate the minimum connection lengths to allow

distribution of the lumped delays.
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(b) After the delays are distributed, correct the partition of E and redo
the initial placement if the PG(V, E) changed.

(c) If a shorter clock period is desired, the third step is to iteratively
improve the placement to shorten the clock period.

3.2.1 Initial Placement using a Partial Circuit Graph The
partial circuit graph, PG(V, E), can be traversed using either a breadth-first or
depth-first traversal algorithm. Contrary to the breadth-first algorithm, which
acts on all the children of a node before going to the next node, the depth-
first algorithm searches for the deepest nodes which are acted on before acting
on the rest of its children. The breadth-first search traversal algorithm was
chosen because the depth-first traversal algorithm may place parallel children
far apart. The traversal algorithm can prefer the left-child over the right-child
(or vice versa) by placing the preferred child first. Once the circuit graph has
been traversed and the elements placed in rows, the physical position of each
input and output terminal can be calculated. This provides the start point,
(Zsi,Ysi, and target point, z,ys), from which the minimum path length for
each connection can be estimated. These estimates are the minimum connec-
tion lengths over which the lumped delays must be distributed in order to
synchronize the circuit and determine the minimum clock period. The details
of the placement algorithms are discussed in the next chapter.

3.2.2 Correct the Edge Partition  After estimating the mini-
mum connection lengths and distributing the lumped delays, it is necessary to
identify any incorrect assumptions on the initial partition of E into the subsets
Ey and E,. If the partition changes, implying a change to PG(V, E), then a new

placement of the devices must be determined. The partitions are checked using
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the following two heuristics. If any connections that were initially assumed to

be long whose distributed length is
ry < 2my;

must be reinserted into PG(V, E). Likewise, those edges that were initially

assumed to be short and whose length ; is
clock period — 10000 < r;

must be removed from PG(V, E). The bounds on both of the above equations
were chosen somewhat arbitrarily after observing the results of the delay dis-
tribution algorithm and noticing that the short connections are typically less
than 2m;. Moreover, the long connections can range in length from a switch
length less than the length corresponding to a clock period to several clock pe-
riods. As mentioned before, since these devices have such large aspect ratios,
the partition of the edges is not critical. Also, these bounds can be changed
by the user if desired.

3.2.3 Iterative Improvement of the Placement Since the
initial placement does not necessarily produce the shortest clock period, iter-
ative improvement techniques are used to find a placement that produces a
shorter clock period. Also, iterative improvement may be necessary if the user
specifies a clock period which wasn’t achieved after the initial placement. Some
possible moves are:

(a) Change device orientation. If a device is oriented to the right, after the
change it will be oriented to the left. This type of move will produce

large variations in the minimum connection lengths.
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(b) Sequential row swaps. Starting from the top of the placement map,
successively exchange the row positions of the next two rows of the
placement map. At each exchange, calculate the new cost function.

(c) Parallel pair row exchange. Scan the placement map for two successive
rows which have their devices oriented in the same direction. For each
pair of rows found, exchange them, and calculate the new cost function.

In general, the initial placement using the partial circuit graph, is
much better than a random device placement, since the devices are oriented in
the direction of signal flow. Changing the orientation of a single device without
regard to the respective orientation of its children is not beneficial. The only
devices whose orientation can be changed are the roots of those trees which
became independent upon formation of PG(V, E). If the children of the sub-
root have already been placed, then the sub-root is placed close to its children.
Otherwise, it is placed in the next available position.

The cost function at each iteration is defined as
C, = minimum clock period.

The goal of any iterative improvement algorithm is to find a cost function which
can be calculated quickly. Determining the minimum clock period involves
several iterations of the distribution algorithm, which is not a simple task.
Since there is a high degree of correlation between the minimum connection
lengths and the minimum clock period, the cost function can be simplified by

summing the minimum lengths of the short connections i.e,

where
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and q is the number of short connections.

Whether the move is acceptable or not depends on the acceptance
philosophy. If a monotonic decrease in cost is preferred, then any move such
that C, < Cp-1, where C,,_; is the cost of the previous placement, will be ac-
ceptable. If a simulated annealing schedule is used, then once again, if the cost
Cn of the new placement is less than the cost C,_; of the previous placement,
the change is kept. However, if C,, > C,_; then the change will be accepted
only if

—(Cn=Cn-1
T < eTp kT ,
where
e ris a random number between 0 and 1,
e k is Boltzmann’s constant (which is a simple constant in simulated
annealing), and
e T is the temperature of the system.

The exponential cooling schedule from [21] is used. It is given by

T, =095%T,

where T), is the temperature of the next step and T,_; is the temperature of

the previous step.

3.3 Routing and the Loop Basis Equations

The interdependency of the connection delays is best described by a
set of loop basis equations [45]. Any circuit graph can be represented by a set
of loop equations which form a basis set or set of fundamental circuits [48] for

the graph. Each loop equation represents a loop of the original circuit graph.
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As the loop is traversed, the element and connection delays are summed. If the
element or connection is aligned with the loop flow, its delay will be positive.
Likewise, if the element or connection is oriented opposite to the loop direction,

its delay will be negative.

L is the loop basis for the circuit graph where £; € L and l; is the

length of loop L;.
For each undirected loop £; € L the total length of edges in the loop

18

L= fare
k=1
where m is the number of edges which form the loop and
e fr = 1if edge k is in the loop circulation direction.
o fr = —1 if edge k is against the loop circulation direction.

For time-of-flight circuit synchronization, the total delay for any loop
is constant and equal to the number of clock cycles specified for that loop in
an initial lumped delay design. Since the element delays are constant and do
not affect the routing, the sum of the connection delays around a loop is also
constant. To maintain a constant clock period as well as signal synchronization,
the individual connection lengths 7, may change so long as the total loop
length I; remains constant. In other words, if an edge in a loop is shortened,
another edge in the same loop (and in the same circulation direction) must
be lengthened by the same amount. The maximum amount an edge can be
shortened is its slack s;. A loop basis for the counter circuit of Fig. 1.1 is shown
in Fig. 3.1. The vertices with the single circle represent the long elements, the
switches, while the vertices with the double circle represent the short elements

such as a coupler, splitter, or combiner. The resulting loop equations are listed
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Figure 3.1: A loop basis for the 4-bit word counter circuit.

below. Note, the signs on the lengths r; correspond to the direction of the

loops as drawn in Fig. 3.1.

L = r3+r7—rn

lh = ris+7r17

Iz = r3+ra—rg—r9—11y
ly = r3+7m10

ls = -ri347r6—T17

le = re+re+rg+rg4ry

l; = ro+re+ratriy+ry




45

3.3.1 Forming the Loop Basis Equations  The algorithm for
finding a loop basis of a circuit graph G(V,E) [48] is as follows:

(a) Find a spanning-tree T and the corresponding co-tree CT of G(V,E).
(b) Clear the set of loops.
(c) For each edge e; = (v,,v;) € CT do

(1) Find the path from v, to v; in T and denote it by P;.

(2) Ci « P, Ue;

(3) L — LUC;

The path from v, to v; in T is found by starting at v, and performing
a breadth-first search of T, labeling each vertex n + 1, where n is the label of
the parent vertex. The search stops when v, is reached. The path from v; to v,
is traced by starting at v, and backtracking through vertices labeled one-less
than the current label. This algorithm can be executed in O(V?) time, since
there are |V| — |E| 4 1 edges in the co-tree, and determining the path for each
edge is at most O(V?).

The loop basis for the circuit graph depends on the spanning tree, and
there may be many spanning trees for a particular circuit graph. For layout
purposes, the routing problem can be simplified if there is at least one ad-
justable connection per loop of the loop basis. Using the above algorithm, it is
observed that the connections that occur in the loop equations most frequently
are the connections that form the spanning tree T. Since the connections with
slack are the most adjustable, a spanning tree incorporating these connections
would be preferable. Therefore, Kruskal’s maximum weight spanning tree al-
gorithm [49] is used to form the spanning tree, where the edge weight is the

slack in the connection. A spanning tree for the 4-bit word counter circuit is
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el7

Figure 3.2: A spanning tree for the 4-bit word counter circuit.

shown in Fig. 3.2. To quickly identify other connections which may be affected
when there is a conflict, a loop/edge matrix is formed. This a two dimensional
matrix where each row represents a loop and each column represents an edge of
G(V, E). If an edge is a member of a loop, then the matrix entry will consist of
a “1” or a “-1” depending on the orientation of the edge terminal components
with respect to the signal flow of the loop. If an edge has only one entry in
the loop/edge matrix, it is called an “independent edge”. The corresponding

loop/edge matrix for Fig. 3.2 is shown in Table 3.1.

3.4 Outline of the Automatic Layout Process

In time-of-flight circuit design, the operating clock speed of the circuit
may or may not be initially specified. For instance, if the circuit is to be
a subcircuit of an existing design whose clock period is already established,
then the subcircuit must cperate at the established clock speed. On the other

hand, if the circuit is independent, then by minimizing the clock period, the
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Table 3.1: The Loop/Edge Matrix for Fig. 3.1.

Loop Edge
e8 [ el3 [ e2 [el7 [ ell [ eSS [ el [ e7 | e6 | el15 | ed | elO | el6 | el4 | e5 | el2
Iy 0 0 0 0 -1 0 1 1 0 0 0 0 0 0 0 0
A 0 0 0 1 0 0 0 o] 0 1 0 0 0 0 0 0
123 -1 0 0 0 -1 -1 1 0 0 0 1 0 0 0 0 0
I 1 0 0 0 0 0 4] 0 0 0 0 1 0 0 0 0
1y 0 -1 0 -1 0 0 0 0 0 0 0 0 1 o] 0 0
lg 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0
T3 0 1 -1 4] 0 0 0 0 1 0 0 0 0 1 0 1

connection lengths and the chip area will be reduced. Therefore, the flow of
the automatic layout algorithm depends on whether or not the clock period is
initially specified.

3.4.1 Unspecified Clock Period When the clock period is un-
specified, the goal is to achieve a routed, synchronized, circuit layout that op-
erates at a minimal clock period. An initial placement is used to estimate the
minimum path lengths of each connection. Using Feehrer’s algorithm [47], the
minimum clock period for this placement can be calculated. This initial place-
ment is iteratively improved until the clock period can no longer be shortened.
As the routing of the connections proceeds and conflicts are encountered, effort
is made to avoid increasing this clock period. However, it may become neces-
sary to increase the clock period in order to route a path around an existing
path.

3.4.2 Specified Clock Period When the clock period is spec-
ified, an initial placement is used to form the estimates of the minimum con-
nection lengths. So long as the specified clock period is greater than or equal
to the minimum (as would be found above), then the circuit can be routed. If

conflicts during routing cause an increase in the clock period, then an alternate
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placement should be used.

The steps in the layout process are outlined below and described in
more detail in the next chapter. Assume a circuit, with ideal lumped delays
and specified device delays, has already been designed using the XHATCH
design tool.

(a) Form a partial directed circuit graph PG(V, E).

(b) Do an initial placement of circuit elements based on PG(V, E).

(c) Determine which devices need to be flipped vertically about their hor-
izontal axis.

(d) Estimate the minimum length of each connection. These minimum
lengths will be used as a starting point in the XHATCH delay distri-
bution algorithm.

(e) Run the XHATCH delay distribution algorithm to find the required
lengths r; of each connection and the minimum clock period.

(f) If a clock period was specified, determine if it is still satisfiable.

(g) Check if any long and short edge designations change after the delay
distribution. If so, repeat the previous steps.

(h) Optimize the placement if a minimal clock period is needed.

(i) Route the connections, shortest lengths first. After establishing each
path, identify and resolve design-rule violations. Recalculate the delay
distribution if necessary.

(j) If routing is not successful, modify the placement and reroute.




CHAPTER 4
THE ALGORITHMS

This chapter describes the details of the placement, routing, and con-

flict identification and resolution algorithms.

4.1 Placing the Devices

The goal during the placement phase depends on whether the clock
period is specified or not. If the clock period is unspecified, the goal is to place
elements connected by short connections as close together as possible in order
to reduce the clock period. If the clock period is specified, the goal is to place
the devices so the clock period can be achieved. Given the above goals, the
major task of the placement phase is to determine the relative position of the
devices and their orientation in the placement map.

4.1.1 Formation of the Directed Partial Circuit Graph  The
directed circuit graph G(V, E) is formed from the connection information ob-
tained using the XHATCH time-of-flight design tool. The root of the graph is
the device which is connected to the output of the clock, the laser oscillator.
Starting from the root, the symbolic circuit diagram is traversed in a breadth-
first manner. Each element is represented by a vertex in the circuit graph and
each connection is represented by a directed edge from the start vertex v, to
the target vertex v,. The more elements in the path originating from the root,
the greater the level number of the vertex in the circuit graph, as shown in Fig.

4.1.
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level 0

-e+— forward edge
feedback edge —

level 1

level 2

T

intra-level edge

Figure 4.1: Formation of the partial circuit graph.

The major connectivity information (for layout purposes) is contained
in the short connections. Therefore, the initial placement is based on the
traversal, in the direction of signal flow, of the partial circuit graph PG(V, E)
formed from the short edges. This partial circuit graph can be formed directly
from G(V, E) by doing a breadth-first search of G(V, E) and ignoring all edges
marked with an ideal lumped delay. Marking each vertex the first time it
is encountered and not revisiting it after it is marked results in a PG(V, E)
which has a tree structure. Therefore, the feedback edge and the intra-level
edge shown in the left graph of Fig. 4.1 will be ignored producing the tree
structure on the right.

It is possible that the connectivity of the graph is broken upon removal
of one or more long edges. When a portion of PG(V, E) becomes independent
in this way, a new sub-tree with its own root is created. The vertex which was
the target vertex of the long edge, becomes a new root which is stored in an
array of roots. The new root and its sub-tree elements are placed after the

previous root and its sub-tree elements are placed.
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4.1.2 Automatic Initial Placement Once PG(V, E) has been
formed, it is traversed using a standard breadth-first traversal algorithm found
in [49]. The algorithm uses a queue structure with two simple supporting
functions to enqueue and dequeue elements. The enqueue function places node
pointers at the bottom of the queue whereas dequeue removes node pointers
from the top of the queue. The top and the bottom of the queue are indicated
by a pair of top and bottom pointers which are shifted at each enqueue and
dequeue operation. The following algorithm places the left child first. It may
be beneficial to place the right child first. Therefore the standard breadth first
algorithm has been modified to check a Boolean variable called "1eft_first"
in order to determine if the left child or the right child should be placed first.

The breadth-first algorithm is as follows:
for each root element

clear the queue
parent = root
place parent
while parent is not NULL
if(left_first)
get left child
if left child is not NULL, place left child

enqueue left child

get right child
if right child is not NULL, place right child

enqueue right child
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else
get right child
if right child is not NULL, place right child

enqueue right child

get left child
if left child is not NULL, place left child

enqueue left child

parent = next element dequeued from the top of the queue
end while loop
end for loop

The algorithm begins by placing the first root node at the upper left
corner of the placement map. Once the root has been placed, it becomes a
parent. The placement of the children of any parent is determined by the end
point of the parent and the length of children. After a child is placed, it is
put on the queue where it remains until it is pulled off to become a parent.
The process of removing elements from the queue and placing their children
continues until the queue is empty.

As mentioned above, for any parent, the placement of its children
depends on the end-point position of the parent and the length of the child.
In general, a child will be placed as close to its parent’s end-point as possible
with the same orientation as the parent unless it occupies a new row. How
the children are placed is summarized in Fig. 4.2. The top of the figure

shows all the possible children configurations (not including the no-child case).
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The dashed circle represents a parent, the solid, filled circle represents a short
child, and the empty circle represents a long child. Using the default row
configuration described in Chapter Two, there are three possible end-point
positions for any parent device. If the parent is oriented from left to right,
then it can terminate at positions one, two, or three. Likewise, if the parent is
oriented from right to left, it can terminate at positions two, one or zero. Each
of these conditions forms a case as shown in Fig. 4.2 and described below:
When the parent is oriented from right to left, the three cases are:

o Case 1: If the parent terminates at point 1, there is enough space
remaining in the row for a switch. Therefore, regardless of the left-
child or right-child first preference, if one or the other of the children
is a switch, it will be placed in the same row as the parent. Otherwise
the left-child or right-child preference is adhered to.

o Case 2: If the parent terminates at point 2, there is only room left in
the row for a short device. If either of the children is short and the
other is long, then the short device will be placed in the same row as
the parent. If the children are the same length, then the left-child or
right child preference is adhered to. If both of the children are short,
they will both have the same orientation as the parent.

o Case 3: Here the parent ends at the right side of the row. The children
will be placed according to the left or right-child first preference start-
ing a point 3 in the next available row. The orientation of the children
is opposite their parent’s orientation.

Note that case 0, when the parent is pointed to the right and terminates at

point 0, is not allowed.
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Figure 4.2: Placing the children.
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Similarly, when the parent is oriented from right to left, there are
again three cases, which are:

e Case 2: This is similar to case 1 above with reversed orientations.
o Case 1: This is similar to case 2 above with reversed orientations.
e Case 0: This is similar to case 3 above with reversed orientations.

4.1.3 Flipping Elements Each device has a horizontal and a
vertical axis around which it can be flipped. Since flipping a device causes
the position of the input/output terminals to change, all element flips must
occur before the minimum path length of each connection is estimated. Also,
because the devices are oriented in the direction of signal flow when they are
placed, flipping around the vertical axis is not beneficial. However, it may
be advantageous to flip the devices around their horizontal axis. First, the
long switches are flipped and, if necessary, then the short elements such as
splitters, combiners or couplers are flipped. A switch is flipped by exchanging
the y-position of tile A and B input terminals and the y-position of the D and
E output terminals. The C input terminal remains the same. Likewise, for
the coupler and combiner, the y-position of the two input signal terminals are
exchanged and for the coupler and splitter the y-position of the two output
terminals are exchanged.

The algorithm to determine whether or not to flip a device depends
on the basic path of the connection into each terminal. If the path into or
out of one terminal crosses in front of the opposing terminal then a counter
1s incremented. When the value of the counter exceeds half the number of
connected input/output terminals for the device, then the element is flipped.

The resulting pseudocode for determining whether or not to flip a switch or
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coupler is presented below:
Scan through device list
if a switch is found
for each input (except the C input for a switch) and output
if the basic path passes by the other input or output, then
increment a counter.
if the counter value is >= half the number of connected I/0
terminals,
interchange the y-positions of the inputs and

interchange the y-positions of the outputs.

The algorithm to determine whether or not to flip the inputs or out-
puts of a short device is the same as above, except only the inputs of a combiner
or the outputs of a splitter are checked.

4.1.4 Estimate Minimum Path Lengths Estimating the min-
imum path lengths involves the straightforward calculation of the Manhattan
distance between the start and target terminals of each connection. Then, a
certain amount of length, depending on the number of 90 degree turns in the
basic path, is added to provide space to connect into and out of the corner
turning mirrors.

4.1.5 First Distribution  After the the minimum path lengths
have been calculated, Feehrer’s version of the distribution algorithm is used
to calculate the minimum clock period for the placement. This results in
a set of connection lengths which will be close to the final results. This is

assumed because the anticipated changes to the lengths during routing are
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typically small, just enough to clear one or more corner turning mirrors (which
is 20-30 microns in either dimension). Therefore, compared to the length of
a switch (approximately 12000 microns), the changes are relatively small. If
the user provided a clock period and the 1deal lumped delays were successfully
distributed, then the layout process can proceed directly to the routing phase.

4.1.6 Final Placement of Devices If the goal is to achieve a
minimum clock period, then the first step after the initial placement, is to
correct for any wrong initial assumptions about the designation of long and
short edges. Therefore, after the first distribution, the distributed length of
each connection is compared with the original assumption. If there are any
long edges (those with lumped delays) which actually end up being short, or
vice versa, 1t 1s necessary to reform the partial circuit graph with the updated
list of short connections. The placement map is cleared before the updated
circuit graph is traversed and the elements placed once again. The flipping
algorithm is run before the minimum paths are estimated. After calculating a
new set of delay lengths and minimum clock period, the placement is ready to
be optimized.

4.1.7 Iterative Improvement of the Placement  After trying
both the left-first and right-first child options, the placement of the devices
may be further improved by swapping rows of the placement map. This simple
algorithm begins by exchanging the y-position of the top two rows. After
calculating the new positions of the device terminals, the minimum length
of each connection is estimated and the minimum clock period is found. If
this clock period is less than the previous clock period, the exchange is kept,

otherwise, the rows are restored to their original positions. The above series
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of steps is repeated for the second and third rows, and so on, till all sequential
pairs of rows have been tested.

After the last delay distribution, when the slack of each connection
is updated, if a path has a slack which is less than the minimum slide length,
then the delay of the path is locked to it’s minimum path length. If this occurs,
it is necessary to recalculate the delay distribution once again to ensure the
system will synchronize, even though one or more connections are locked to

their minimum length.

4.2 Forming the Connecting Paths

The routing of the waveguide connections between the circuit ele-
ments is the next major step in the layout of integrated-optic time-of-flight
circuits. Since connecting paths can cross each other as well as other devices,
obstacle avoidance is not a problem. However, path segments may not overlap.
Luckily, due to the use of corner turning mirrors and a Manhattan geometry,
the connections are very structured entities and have a versatile representation
which promotes the identification and repositioning of the segments.

The routing of the path segments defines a series of numbered points,
starting with the start point and terminating at the target point of the connec-
tion. The start point is point numbered zero and the target terminal point is
numbered either 3 or 5§ depending on whether the connection has a minimum
of 3 or 5 segments. For generality, the target terminal is labeled z,y;, and
the point next to the last point is labeled zs_1,ys_, see Fig. 4.3.

Some terms which are used describe the connecting path are presented
below.

e Basic Path. This is the minimum length path of the connection before
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Figure 4.3: Basic points and Manhattan region of a path.

any additional length is added to increase the delay for signal synchro-

nization.

Path Segments. These are the horizontal and vertical sections which
form the path of the connection. The basic path contains either 3 or 5
segments depending on the type of the connection. More on connection
types will follow.

Start Point. This defines the coordinates of the output terminal of the
source device. This is always point zero in the Point Array.

Target Point. The coordinates of the input terminal of the sink device.
Point Array. This is the series of points which determine the basic
path, starting with the start point and ending with the target point.
Even Point. This is a point in the point array with an even index,
which indicates the start of a horizontal segment.

Odd Point. This is a point in the point array with an odd index, which
indicates the start of a vertical segment.

Manhattan Region. The area formed by all possible minimum length
paths is called the Manhattan region, see Fig. 4.3.

Basic Extension. A small horizontal extension formed at the output
or input of a device when the path needs to change direction by 180

degrees, as shown in Fig. 4.4. This extension provides room for a pair

xt-1, yt

xf-1,yf
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Figure 4.4: The Basic Extension.
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Figure 4.5: Left and Right Adjustable Slides.

of corner turning mirrors. The length of this extension is added to
the estimate of the minimum connection length before the first delay
distribution.

Basic Slide. This is an adjustable slide which occurs along the basic
path within the Manhattan region as shown in Fig. 4.4.

Designated Point. The point in the point array after which the addi-
tional slides are inserted. This point is predetermined for each of the
connection types to be defined in the next section.

Additional Slide(s). To create long path delays, additional length is
added to the basic path in the form of slides. An additional slide is
a series of three segments, connected like a trombone slide extension
(i.e. two horizontal segments and a connecting vertical segment), rep-
resented by a series of four points (0,1,2, and 3). These slides are
connected to the basic path after the designated point in the point ar-
ray and can extend beyond the Manhattan region as shown in Fig. 4.6.
The length of a slide can be varied by repositioning the x-coordinate

of points 1 and 2 as shown in Fig. 4.5.
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Figure 4.6: An additional slide added to the basic path.

e Slide Array. If more than one slide is needed to create the required
path delay, then an array of additional slides is formed after the des-
ignated point. The path formed by the slide array continues from the
designated point through the three segments of the slide. The last
point of the previous slide becomes the first point of the next slide
and so on till the path returns to the basic path at the point after the
designated point.

4.2.1 The Six Path Types If all possible basic paths between
all possible start and target point positions are drawn, a set of six types
emerges. Each path type has a characteristic shape which is shown in Fig.
4.7.

The details of each path type are described below:

(a) Type 1: This path has 6 points which determine 5 basic segments, three
horizontal and two vertical. For this type of path and the subsequent
types, there is a short (the length of a basic extension) horizontal
segment originating at the start point and another short horizontal
segment leading into the target point. An additional horizontal track
segment must be found for the segment between points 2 and 3. The
connection has two basic extensions, and the potential to form zero,
one or two basic slides in the Manhattan region depending on whether

there are any terminals on the far left or far right sides of the layout.
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Any slack in the connection needed for signal synchronization, is taken
up by slides formed after point 3.

Type 2: This path, like type 1, also has 5 segments determined by
6 points. Again, a horizontal track segment must be found for the
segment between points 2 and 3. The connection has a single basic
extension between points 3 and 4, which may be extended to form a
basic slide if the terminals of the path are either on the far left or far
right sides of the layout. Any slack in the connection is taken up by
additional slides formed after the designated point, point 3.

Type 3: This path has basic 3 segments determined by 4 points. No
additional horizontal track segments need to be found. The connection
has one basic extension which can be extended to form a basic slide if
the path is formed in either the left or right margin. Any slack in the
connection is taken up by additional slides formed after point 1.
Type 4: This path type forms the short, cross-channel, intra-row paths.
This type of path is formed by 3 segments determined by 4 points. Like
the type 3 path, no additional horizontal track segments are needed
for the basic path. Any slack in the connection needed for additional
delay is taken up by slides formed after point 1.

Type 5: Like path types 1 and 2, these paths have 5 basic segments
determined by 6 points. An additional horizontal track segment needs
to be found for the segment between points 2 and 3. The path has
no room any basic slides, nor does it require additional length for
the corner turning mirrors. Any slack in the connection needed for

additional delay is taken up by slides formed after point 3.
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Table 4.1: The path type for each start and target position.

Start Target
LE | LS | Li-L [ Li-R | Ri-L | Ri-R [ RS | RE
LE 4 | 4 2 5 2 5 215
LS 4 |3 1 6 1 6 1 {6
Li-L || 6 | 1 3 4 2 5 2|5
Li-R || 5 | 2 4 3 1 6 1|6
Ri-L || 6 | 1 6 1 3 4 215
Ri-R || 5 | 2 5 2 4 3 116
RS 6 | 1 6 1 6 1 3 | 4
RE 5 | 2 5 2 5 2 4 | 4

(f) Type 6: This path is the mirror image of path type 2. It has one
basic extension between points 1 and 2, which may also form a slide
if it extends into either left or right margins. Again, point 3 is the
designated point from which the additional slides can be formed.

The abbreviations for the different start and target positions are:
o LE: left edge.
e LS: left side.

o Li-L: left-inner column, left side.

o Li-R: left-inner column, right side.

o Ri-L: right-inner column, left side.

e Ri-R: right-inner column, right side.

e RS: right side.

o RE: right edge.

Table 4.1 lists all the possible combinations of start and target point

positions and the resulting path type. Note that the edges which start or termi-
nate at either the left or right edges are the I/O connections. After determining

their path type, I/O connections are treated as any other connection.
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Once the path type for a given connection is determined, other infor-

mation about the path is simple to deduce based on the position of the start

and target points. The data accompanying each path is summarized below:

The type identification code, for the path types 1-6 as shown in Fig.
4.7.

The number of points in the connection (either 4 or 6), depending on
the number of segments in the basic path.

The number of basic extensions, which depends on the number of 180
degree turns the basic path makes.

The number of basic slides, which is determined by the number of
basic extensions which have room to extend even further to form an
adjustable slide.

The first basic slide position. This is the point which identifies the
start of the first basic extension which can be used as a basic slide.
The second basic slide position. If the path has two basic slides, this
point identifies the start of the second basic extension which can be
used as a basic slide.

The index of the designated point after which additional slides are
formed.

Is a horizontal track needed for the basic path? This variable is true if
the basic path has a long horizontal segment which needs to be placed
in a horizontal track such as for path types 1, 2, 5 and 6.

For example, for a type 1 path with a start terminal on the left-most

side of the devices and a target terminal on the left side of the right vertical

channel, the above variables are set as follows:
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e The type identification code is 1 for a type 1 path.

o There are 6 points in the basic path.

e There are 2 basic extensions. The first is needed for the 180 turn
between points 0, 1, and 2 and the second for the 180 turn between
points 3, 4, and 5.

o Since the basic extension in the right vertical channel can not be ex-
tended beyond the right side of the channel without coinciding with
the inputs of the next device, only the left-most basic extension has
room to extend further. Therefore, there is only 1 basic extension.

e The first basic slide position. The start point of the only basic exten-
sion is point 1.

e The second basic slide position. This is zero since there is only one
basic extension.

e The index of the designated point after which additional slides are
formed is point 2. This is the best point after which to form additional
slides because if a horizontal track is needed for the basic path, this
track segment can be extended along the path direction to form the
first slide.

o Is a horizontal track needed for the basic path? Yes, one horizontal
track is needed between points 2 and 3.

The data for the other paths is listed in Appendix A.

4.2.2 The Routing Algorithm  Assuming all the devices have
been entered into the placement map, the overall flow of the routing algorithm
1s described below.

(a) Sort the connections according to their distributed lengths.
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(b) Route the connections starting with the shortest lengths first.

(1) Based on the type of the connection, form its basic path.

(2) If the slack of the connection > 0:

(a) Extend the basic slide(s).
(b) While there is still unrouted slack length, form additional
slides till all remaining slack has been routed.

(3) Identify and resolve conflicts with other connections.

The details of each of the above steps are explained in the following
sections.

4.2.3 Sort the connections by length  During routing, as more
connections are routed, more length is needed to go around the previously
placed connections. A natural routing order is one which routes the short con-
nections first and the long connections last. Therefore, the connections are
sorted using the quicksort algorithm in [49]. Quicksort was chosen because it
sorts in place and runs in O(nlgn) time on average. This time is no worse
than that of other sorting algorithms such as merge sort, which does not sort
in place, or heap sort, which quicksort generally outperforms [49].

4.2.4 Route the Paths The goal is to draw each connection
so that its drawn path length equals its required length. The routing of each
connection in the sorted list is accomplished in three steps which are:

(a) Form the basic path. The basic path consists of the minimum Manhat-
tan path from the start point to the target point. Once the path type
is known, the routing of the basic path is straightforward since there is
essentially only one unknown coordinate of the basic path. The reason

for this is that the first and last segments of each path are always short
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yt is only unknown position
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Figure 4.8: One unknown position in the basic path.

horizontal segments the length of a basic extension. Since this length
is constant, points z,,7; and zs_y,ys_1 are easily determined. The
remaining point in the basic path to be found is the y-position of the
horizontalv track segment for those connections requiring a horizontal
track segment. Therefore, the only unknown in the routing of the basic
connection, is the y-position of the middle horizontal segment, see Fig.
4.8. The first available horizontal track in the Manhattan region is
used. However, if no tracks are available in the Manhattan region, the
search continues outside the region stopping when a track which can
store the desired length segment, is found.

Extend the basic slide(s) if necessary. If the slack, which is the differ-
ence in length between the distributed and minimum delays, is greater
than zero, then the path delay needs to be increased. This is done by
extending the basic slide(s) to the chip border.

Form additional slides. If there is still unrouted slack, s,, after extend-
ing the basic slide(s), then additional slides must be added to the path.
The three segments of each additional slide are stored in a four point

data structure which is inserted in a slide array which is scanned after
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the designated point in the basic path. The four points of the slide
array are determined as follows:
e Point 0: The z, is equal to the x-position of the designated point.
If this is the first slide and if there is space on the track, then yq is
the same as the y-position of the designated point. If a new track
is used, then yo is the position of the first available horizontal
track.
e Point 1: z; is determined by the magnitude of s,. The distance
from xo to the furthest edge is estimated and multiplied by two.
If the remaining unrouted slack is greater than this, then z; is
the x-position of the furthest edge, otherwise z; = 2o + s, /2, and
Y1 = Yo
e Point 2: z; = z; and y, is the position of the next available track.
e Point 3: z3 is the x-position of the designated point if the first
point of the first slide is within the Manhattan region. Otherwise,
z3 is shifted over to prevent the return path from coinciding with
the the vertical segments between the slides, and y3 = y,.

After the points of the slide of length I, are found,
S =8, —l, —2x 1y

where [; is the y-deviation from the Manhattan region which is deter-
mined by the position of y; relative to the target point of the connec-
tion.

(1) If y3 is within the Manhattan region, iy = 0.

(2) If this is the first slide which has gone outside the Manhattan

region, then Iy = y3 — y¢, where y; is the target point of the path.
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(3) If this is the second or any other succeeding slide which has gone

outside the Manhattan region, then
la=ys— ¥,
where y, is the y-position of the last point of the previous slide.

4.3 Resolving Conflicts

While forming the basic path, the basic extension(s), and the addi-
tional slides, the path may run into another path. If the new path crosses
over another path at right angles, there is no problem. However, when two
segments overlap and share the same portion of a track, there is a design-rule
violation or a conflict. As each successive path is routed, there is an increas-
ing chance a new path will overlap a previously routed path. For example, in
the counter layout, connections €9 and el0 overlap between points 1 and 2 as
shown in Fig. 4.9. The two connections which overlap form what is called a
“conflicting pair”. Conflicts can occur with either horizontal or vertical path
segments. While checking for conflicts, a new segment may partially or com-
pletely overlap an existing segment or the existing segment may lie within the
new segment. When an overlap is detected, either the path of the new connec-
tion or the path of the previously routed connection must be altered to avoid
the conflict. There are two possible approaches to solving this problem which
are described below.

4.3.1 Resolve Conflicts Before Routing  One approach is to
try and predict where the conflicts may arise before the connections are actually
routed. The basic path of the connection can be predicted once the position of

the start and target points are known. If the basic path of one connection has
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Figure 4.9: Example of a conflict between two connections.

a segment which will overlap the basic path of another connection, then there
is a high chance there will be an overlap during routing. A certain amount of
length needed to avoid the conflict can be added to the estimate of the minimum
path length and accounted for in the delay distribution. The problem with this
approach is that it impossible to accurately predict the entire path, including
the horizontal track segments as well as the slides, before it is actually routed.
This 1s because the availability of space in the tracks depends on the paths of
the previously routed connections. The actual path of any connection is not
entirely known till the connection has been completely routed.

4.3.2 Resolve Conflicts During Routing A more direct ap-
proach, and the approach used in this work, is to resolve conflicts during the
routing stage. There are three ways this can be done.

(a) The simplest approach uses the most basic form of conflict resolution.
Conflicts are identified while the path is being formed. If one occurs,
the conflicting segment of the new path is simply repositioned to avoid
the conflict. After the conflict free path has been formed, the total
drawn length is compared to the required length. If they differ, the
drawn length of the new path is entered as its minimum length and the

delays of the system are redistributed. Any previously routed paths
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whose required length changed as a result of the redistribution, are
adjusted.

(b) Another approach is to check for and resolve conflicts as the path is
formed. If a conflict is encountered, there are two choices, either adjust
thz new path or else adjust the old path. If either segment in the
conflict pair can be repositioned without affecting the total path length,
or causing a new conflict with a horizontal segment, then resolving the
conflict is simple. If neither path can be adjusted without changing
its path length, then extend one connection beyond the conflict and
redistribute the system. It is possible the clock period may increase.
Usually, the path length increase is on the order of a few tens of microns
corresponding to a delay change on the order of 0.1 ps, so the overall
effect on the clock period will be small. Once the conflict is resolved,
routing proceeds where it left off.

The major advantage of this approach is that it is not necessary to
make adjustments on existing portions of the path. However, it may
be necessary to make adjustments on a previously routed path.

(c) The third approach is essentially the same as the previous approach ex-
cept that the vertical segments are scanned for conflicts only after the
entire path and slides have been formed. Horizontal conflicts are iden-
tified and resolved during the routing of the basic path. The advantage
of this approach is that the algorithms for adjusting the current path
are the same as for adjusting an existing path.

Note, in all three cases, if a conflict occurs with a horizontal segment

)

the path is simply shifted to the next available track. As long as the track is
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within the Manhattan region, the path length remains constant. The choice
of horizontal track is made without checking for conflicts within the vertical
tracks. This tactic loads the task of conflict resolution onto the vertical seg-
ments. Therefore, the rest of the discussion involves the identification and
resolution of conflicts between vertical path segments.

4.3.3 Path Variability In order to resolve a conflict, the path
of one connection in the conflicting pair needs to be adjusted. This adjustment
can be simple if the conflict occurs with a segment which can be repositioned
without affecting the path length. Therefore, how each conflict is resolved de-
pends on the relative position of the conflict in the path. When a conflict is
identified, three segments are stored: the segment just prior to the conflict, the
conflicting segment, and the segment following the conflict. There are essen-
tially two different configurations these three segments may have, depending
on whether or not the signal changes its direction after passing through the
vertical segment, as shown in Fig. 4.10. In the first case (as shown in the upper
half of the figure), the direction of signal flow in the two horizontal segments
is the same. Whereas, in the lower half of the figure, the direction of signal
flow in the upper horizontal segment is different than in the lower segment. In
the first case, repositioning the vertical segment, a “variable segment,” has no
affect on the path length, while in the second case it does. Several path types
(types 2, 4, 5 and 6) have one or or two variable segment(s) within their basic
path as shown in bold in Fig. 4.11. Portions of the basic path routed between
slides may also be variable. If a path has two or more slides (either basic or

additional) then it is considered to have variable segments.
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Figure 4.10: Two Vertical Path Configurations.

Figure 4.11: Variable segments in each Connection type.
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4.3.4 Conflicts Between Connections With Invariable Paths
If both of the segments in the conflicting pair are invariable, then it will be
necessary to increase the length of a path in order to circumvent the conflict.
The loop basis equations are used to determine which connection of the con-
flict pair will have the least impact on the other connections when its length
is changed. Once a path length is increased, it may be necessary to adjust
several connections in other loops in order to achieve synchronization. If this
situation results in a set of connection delays for which the circuit cannot be

synchronized, then a new clock period must be found.

4.4 The Steps to Identify and Resolve Conflicts

Regardless of which phase of the routing process, either during path
formation or after, the steps for conflict identification and resolution are the
same. These two steps are described below:

4.4.1 Conflict Identification = While the path is formed, or af-
ter it has been established and before routing the next connection, the coordi-
nates of the point and slide arrays are scanned. As the segments are scanned,
the vertical segments, identified by an odd numbered start index, are compared
to the other segments in the track associated with the particular y-position of
the segments. Conflicts are identified by comparing the endpoints of the new
segment with the endpoints of the existing path segments and checking if ei-
ther one overlaps the other. The identity of the connection containing the other
conflicting segment is determined at the time of conflict identification, but not
the indices of the conflicting segment in the other connection. Therefore, in
order to determine the exact position of the ccnflict in the existing path, the

point and slide arrays of the other connection are scanned until the position of
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the segment matches the position of the conflict.

4.4.2 Conflict Resolution As mentioned above, how a conflict
is resolved depends on whether or not the conflict occurred with a variable
segment. The simplest case is one where the conflict occurs with a variable
slide segment as described below. The situation becomes slightly more complex
when the conflict occurs on a variable segment of the basic path. Even though
repositioning the segment in question will not affect the path length, it is not
always obvious in which direction to shift the segment. This depends on the
path type and the specific position of its basic extensions. Finally, if the conflict
occurs on an invariable segment, it may be possible to reposition the segment
if the connection had a slide which could counteract the change in length.
Therefore, the first step is to determine whether the conflict is in the slides, or
part of the basic path (including between the slides). Once this is determined,
then the following algorithm is used to route one or the other of the paths
around the conflict. In the following discussion the term “new connection”
refers to the most recently routed path and “old connection” refers to the
previously routed connection of the conflicting pair.

4.4.3 When the Conflict is in the Slides The simplest con-
flict resolution case is when the conflict occurs with the vertical segment of a
slide. When this is true, and there is another slide which can offset the path
length change, the slide is extended beyond the conflict and another slide is
pulled in to compensate for the delay change. In paths with many slides, all
the slides, except the last, will be extended to the far left or right side of the
chip. Thus, a conflict will most likely occur in a slide prior to the last slide in

the array. Therefore, in most cases, a conflict in a slide segment can be resolved




(4

by reducing the length of the slide containing the conflicting segment and in-
creasing the last slide an equal amount to maintain a constant path length. If
the conflicting segment is not at either edge, then it can be repositioned out
towards the edge, while the last slide is decreased in length. If the conflict
occurs in the last slide, then the last slide is increased and a previous slide
decreased. Note, any path adjustment is preceded by a check of the horizontal
tracks to ensure the adjustment will not cause a conflict there.

4.4.4 When the Conflict is in the Basic Path  If the conflict
occurs in the basic path, then the course of action depends on the relative
position of the conflict within the path and the path type. For each connection
in the conflicting pair, try the following:

(a) Check if the conflicting segment is variable. If it is, reposition it in a
direction depending on the path type.

(b) If the segment is not variable, check if the path contains a basic or
additional slides. If it does, try repositioning the segment and adjusting
the length with the slide.

(c) If there are no slides, check the other connection.

As with the slide adjustments, adjustments are only executed if there
is no conflict with a horizontal segment.

4.4.5 When Neither Connection is Adjustable If neither
connection in the pair can be adjusted without changing its path length, then
it is necessary to increase the length of one path. The loop basis equations,
which are represented by the loop/edge matrix, are used to determine which
connection of the conflicting pair occurs in the fewest loops. This is the one

which will cause the fewest changes on the other path delays. When the length
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of a connection is extended to clear a conflict, care must be taken to ensure
enough length is provided to clear all other possible conflicts along its path.
After distribution of the path delays, the path lengths of the previously routed
connections are adjusted as necessary. If these adjustments cause additional

conflicts which can not be resolved, start over with a new placement.

4.5 Data Structures

The ultimate purpose of the layout tool is to allow the production of
masks. In order to facilitate the production of these masks, the layout tool
will produce a data file containing all the graphical information about each
device and connection in the layout. This information is gathered by scanning
through the list of layout elements and the list of connections and reading the
desired graphical information from the data structures.

In order to minimize interaction with the original XHATCH data
structures, a separate device data structure is used to store the graphical in-
formation used by the layout tool. In particular there are the:

e Placement map coordinates.
o Graphics coordinates of upper left corner of the enclosing rectangle.

e Graphics coordinates of lower right corner of the enclosing rectangle.

Array of graphics coordinates for the input terminals.

Array of graphics coordinates for the output terminals.

Pointer to circuit device definition structure.




CHAPTER 5
RESULTS

How the automatic layout tool performs on three successively larger

time-of-flight circuits is described next.

5.1 Four Bit Word Counter Circuit

The 4-bit word counter circuit, shown schematically again in Fig 5.1,
is one of the many subcircuits of the SPOC [2]. Input pulses to be counted
are generated by a 1300 nm laser (represented by Osl in the Figure). These
input pulses are split at Spl and sent to Swl and Sw3. From Swl, only every
fourth clock pulse is passed through to Sw2 to arrive at the control input of
Sw3. After arriving at Sw3, the control pulse switches the arriving input clock
pulse to e3 which is then split at Sp4 and sent to Sw4 and Sw5. Accumulated
bits circulate in the e8 and el0 memory loop. With a memory loop delay of
four bits, this circuit can count up to a maximum of 16, 4-bit binary words.
The output generated by Sw4, is a string of pulses with a binary bit pattern
representing the present 4-bit word count.

5.1.1 Placement of the Devices The first step in the layout
process is to form an initial placement of the devices. Since edges €13, el7, 5
and e8 have lumped delays of 2, 1, 1, 4, clock cycles respectively, they were
initially assumed to be long edges. These edges were removed from the circuit
graph of Fig. 3.1 resulting in the partial circuit graph of Fig. 5.2. Note that

edges e5, e6, e7, and e9 were subsequently removed, since only one edge is
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Figure 5.1: Four-bit word counter design.
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Figure 5.2: Initial partial circuit graph of the 4-bit word counter circuit.

required between vertices.

Using this partial-circuit graph (which now resembles a tree) and
a left-child first preference, results in the initial placement of the devices as
shown in Fig. 5.4. After estimating the minimum connection lengths, the
distribution algorithm was run and the minimum clock cycle length of 55850
A was found. The next step was to correct the partition of the long and short
edge sets. After comparing the estimated minimum lengths with the actual
delay lengths needed for circuit synchronization, it turns out that path e5,
which was originally assumed to be long, is actually short and path €2 is long.
After correcting the edge set partition, the partial circuit graph of Fig. 5.3
is formed. Notice, with €2 removed, it is not necessary to add e5, since col

is reached via e6. With these changes, Sw3 is no longer in parallel with Swl,
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resulting in the placement of Fig. 5.5, which has a minimum clock cycle length
of 55150\ (a reduction of 1.25%). The clock period can be calculated using
nl/c where [ is the clock cycle length (with A = 1uym), n = 2.2 and ¢ = speed
of light. This placement has the potential of using a laser clock with 0.4044 ns
period corresponding to a maximum operating frequency of 2.473 Ghz.

Fig. 5.6 shows the completely routed circuit using the corrected initial
placement of Fig. 5.5. During the routing phase, €9 conflicted with e10. Since
el0 is a type 1 path with a little slack, the routine first tried to shift the
conflicting segment and extend e10’s basic slide, however, doing so would cause
the vertical segment to overlap the terminal points. Thus, this attempt to
adjust el0 failed, so €9 was tried. Even though €9 does not have any slack, it
does have two variable vertical segments because it is a type 5 path. Therefore,
the conflicting segment of €9 was successfully adjusted without effecting 9’s
overall path length. Path el3 also ran into a conflict. After forming several
additional slides which had ventured outside the Manhattan regioh, the return
path to the target point overlapped a segment of the basic path. This conflict
was avoided by shifting e13’s return path over to the next vertical path and
reducing the length of an additional slide to keep the path length constant.
Likewise, the return path of e8 was adjusted in a similar manner.

The next figure shows the effect of using an iterative improvement,
sequential row swapping algorithm on the initial placement of Fig. 5.5. Only
the exchanges which decreased the major clock cycle time, were kept. In this
case, rows 2 and 3 were exchanged, then rows 3 and 4 were also exchanged.
This resulted in a placement which is shown in Fig. 5.7 with a minimum

clock cycle length of 54450\ corresponding to a period of 0.3993 ns and a
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Figure 5.7: Improved placement (left-child first) of 4-bit word counter.

maximum frequency of 2.504 Ghz (which is 1.27% less than the unoptimized
initial placement).

The complete layout is shown in Fig. 5.8. During the routing phase,
e7 which i1s a type 1 path with no slack, conflicted with e3 which is type 3 path,
also without slack. Since neither path could be adjusted without changing
its length, the loop-edge matrix was checked to determine which of the two
paths is a member of the fewest loops. Since €3 is an independent edge of
the loop-edge matrix for this placement, its length was increased by 100 A
and the delays were redistributed without any change to the clock period. As
subsequent paths were routed, el0 encountered several conflicts First with

e9, and as in the previous layout, the conflicting segment of €9 was extended.
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Figure 5.8. Complete layout of 4-bit word counter (improved placement, left-
child first).

Then el0 conflicted with 7. Since el0 is a type 1 connection with no slack,
it cannot be adjusted without changing its length. After checking the loop-
edge matrix, it was determined that €10 should be extended. Since a vertical
segment occupies the next track, el0 was extended past €3 incurring a 200X
path increase. After redistribution of the path delays, the path length of €9
needed to be increased to maintain synchronization. This was done by adding
a slide to its path. Finally, after adjusting the return path of el3, the rest of
the paths were routed without conflicts. The entire circuit was laid out with 4
calls to the distribution algorithm with no change to the clock period during
the routing phase.

Notice the above placements preferred the left child first during breadth
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first traversal of the partial circuit graph. Therefore, when there were two par-
allel, similar length children, the left child was placed before the right child. A
variation of the placement algorithm is simply to choose the right child first.
Using this option, the devices are initially placed as shown in Fig. 5.9. The
minimum length of the clock period increased by 2.24% to 57962, or 0.4251
ns. Note how this small change in the algorithm produced a large variation
in the placement, compared with the initial placement of Fig. 5.4. Not only
are the parallel children, Swl and Sw3, switched but also the placement of the
children’s subtrees, causing sp4 and Sw5 to move up two rows and Sw2 to move

down two rows.

After correcting the edge partition, the difference between using the
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Figure 5.10: Corrected placement of 4-bit word counter (right-child first).

left or right child first is less dramatic in this case, because after removing €2,
Swl and Sw3 are no longer in parallel. This corrected placement is shown in
Fig. 5.10.

Running the sequential row swap, iterative improvement algorithm
on the above placement produces the placement which is shown in Fig. 5.11.
This placement has the potential to operate with a minimum clock length of
566181 (0.4152 ns), an improvement of 2.32% over the unoptimized, right-
first, placement. However, this is still greater than the minimum clock period
possible with the optimized left-first placement.

The completely routed layout of the above placement is shown in Fig.

5.12. Even though two redistributions were required, first for a conflict between
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Figure 5.12. Layout of 4-bit counter (improved placement and right-child first).

e7 and el5, then again between e3 and €7, the clock period didn’t change.
5.1.2 Layout of Circuits with a Specified Clock Period An
example of a layout where the clock period is specified is shown in Fig. 5.13.
The 4-bit counter clock period length was specified as 64000\ or 0.4693 ns.
Since this period is greater than the minimum found before optimization, it
was not necessary to iteratively improve the initial placement.
5.1.3 Summary of Results for the Counter Circuit Table

5.1 summarizes the placement and routing results of the 4-bit word counter

circuit.
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Table 5.1. Summary of the minimum clock delay length, period and frequency
for each layout.

Placement Figure Minimum Clock
Length (}) | Period (ns) | Freq. (Ghz)

Initial PL. (It) 5.4 55850 0.4096 2.442
Corrected P1.(1t) 5.5 55150 0.4044 2473
Layout of Correct. PL. (It) | 5.6 55150 0.4044 2.473
Improved P1. (1t) 5.7 54450 0.3993 2.504
Layout of Impr. PL. (1t) 5.8 54450 0.3993 2.504
Initial PL. (rt) 5.9 57350 0.4206 2.378
Corrected P1. (rt) 5.10 54350 0.3986 2.509
Improved PI. (rt) 5.11 54350 0.3986 2.509
Layout of Impr. PL. (rt) 5.12 54350 0.3986 2.509
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Figure 5.14: Schematic of the simple sorter.

5.2 A Simple Sorter

An example of a slightly larger circuit is the simple sorting circuit
shown in Fig. 5.14. This circuit, which has 9 switches and 9 splitters, was
designed by Neil Coletti of the Supercomputing Research Center and John
Feehrer from the Optoelectronic Computing Systems Center at the University
of Colorado, Boulder.

The automatic placement of the elements (without iterative improve-
ment) is shown in Fig. 5.15. The minimum clock length for this placement is

291211, corresponding to a period of 0.2136 ns and a maximum frequency of
4.683 Ghz.

The layout of the unoptimized placement is shown in 5.16. During
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Table 5.2. Summary of delay redistributions for the unoptimized sorter layout.
| Num. | Curr. Path | Conflict. Path | Extended Path [ Clock (}) |

1 el5 el9 eld 29121
2 el6 ell el6 29121
3 el6 ed4 el6 29121
4 el6 el9 el6 29321
5 el6 el3 el3 29421
6 e38 el6 e38 29421
7 test2 Conl6 test2 20421
8 Con9 el6 Con9 29421
9 Con2 ell Con2 29421

the layout, the conflicts in Table 5.2 resulted in 9 redistributions causing the
clock delay length to increase by 1% to 29421 for a period of 0.2158 ns and
a frequency of 4.635 Ghz. Looking at the Table, €16, which is a type 1 path
with no slack, ran into the most conflicts requiring the extension of the other
path and subsequent redistribution of the path delays.

Running the sequential row swap algorithm caused the exchanges of
rows 3 and 4, and rows 7 and 8, resulting in the placement of Fig. 5.17. This
placement has a clock delay length 28721 corresponding to a period of 0.2106
ns and a frequency of 4.478 GHz which is a decrease of 1.37% compared to the
unoptimized placement.

After optimization of the placement, the connecting paths were suc-
cessfully routed as shown in 5.18. The final clock delay length increased by
100A to 28821). The final clock period is 0.211 ns for a maximum frequency of
4.731 Ghz, which is an increase of 2.04% from the maximum clock frequency
using the unoptimized placement. The entire layout has a width of 2 cm and a
length of 0.6 cm for a total area of 1.2 cm?. The paths encountering conflicts

which required a delay redistribution are listed in Table 5.3. Notice, two less




| L - L J L JL J L l‘
- &]1 legrae=c 5p]3 leons ‘“&’:
' f Lo Conl0
[ _eoh
BP9 - Cont? A7 om0t =
L L
[— (] [l
Y7 I -~ MF
test3
X[
Ve /_I> Eﬁz:‘;’—
o
S
L 02
':F\)E;- 2 Ir‘\_
Pk
fml? o
S’ T—
i ___‘a [ 1 B0 &
E:, [T 7 {~
| 1 18
=B ! Y
2r 1.~
T T~~~
e [
a9
2,
( 1l _—
T eng | ) [ N
~
T 121 21 ]
1 T~
17 ]
—~lnppt ] ]
e | T ]
H ]
6 ]
2 1 e21
~ 1 T _‘\__]
— - )
e8 ]“&‘1( .~ 1
[ T
| ]
]
]
]

Figure 5.16: Unoptimized layout of the sorter.




98

Ii‘ile”Edit”Window“ﬂode”Optinize”!‘ont| juntitled 1|
4@1 ~_~<§3 -_a;:_sa
<& A =
"_‘*_& [ 1 e e
T T e
— 1
= L -
% L
1 ) [ N
o 1
o | | B N
—~ 1
[ oam I~
~Inppt 1~
I I N,
X 1
L
— 1 _—
[ | T

Figure 5.17: Optimized placement of the sorter elements.




99

Table 5.3: Summary of delay redistributions for the optimized sorter layout.
| Num. | Curr. Path | Conflict. Path | Extended Path | Clock (}) |

1 el3 ed4 el5 28821
2 Conl6 ell Conl6 28821
3 el6 ed4 ed4 28821
4 el6 elb el5 28821
5 el6 e38 e38 28821
6 test2 ell test2 28821
7 Con2 ell | Con2 28821

delay distributions were required than for the unoptimized layout.

5.3 Logarithmic Delay Line

The next circuit is an example of a much larger circuit than the pre-
vious two. It consists of 116 internal connections, 30 switches, 25 splitters, 4
combiners and 4 couplers. The logarithmic delay line is an architecture for
the temporal alignment of two incoming packets [50]. The delay line uses a
logarithmic number of switches or nodes to align two signals. If two packets
arrive at different times at a node, k, it synchronizes them by delaying the first
of the two packets by an amount given by (T//2)*, where T is the length of a
packet plus the separation between packets.

The circuit schematic is shown in Appendix B. After invocation of the
automatic placement algorithm, the devices are placed as shown in Fig 5.19.
The upper portion of the completely routed layout (scaled by 30 in both x and
y-directions) is shown in Fig 5.20. This figure shows everything but two delay
lines, whose lengths are greater than a meter, which may be routed better
off-chip. The entire layout (scaled by a factor of 30 in the x-direction and 5 in
the y-direction) is shown in Fig. 5.21 (folded, in the back pocket). It turns out

that the shortest clock period was achieved after using the complete circuit




100

———m—‘(:ﬁ]i l&!ﬂ‘:::_? [’Cuus _F'J‘Hl
[ | Con8
1 Conl0
[ 226
P9 == Cont7 r‘f“‘ Con3P8 ==
| —_ t
test3
e 0 r 1
e 5P T T
al3
tastD
= B
1 T~ _
] [
1 H * —F=
2! =38 E
g 1 —_,
T rq -~
alf
ald
[
{ L~
| E— | S SN
alf
a9
2 ¢ alf \
T T~ 1
]
QIE L SuZ,
1]
e 17 T
]
—~Inppt 1]
T T_]
-]
) 21
T~
nl
L ]
T~
]
]
1
1
|

Figure 5.18: Layout of the sorter using the optimized placement.
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Table 5.4. Summary of the minimum clock delay length, period and frequency

for each placement of the logarithmic delay line.

Circuit Configuration

Minimum Clock

Length (1) | Period (ns) | Freq. (Ghz)

Init. Placement (Partial Graph) 40503 0.2970 3.367
Init. Placement (Complete Graph) 38153 0.2797 3.574
Layout of Init. Placement 38753 0.2829 3.535

graph. When the partial circuit graph was used, the new subtrees, created

when the long edges were removed, ended up being placed farther away from

their parents, causing the clock period to increase. The results (all using the

left-child first preference) are shown in Table 5.4. The integrated chip size will

be 2 cm wide by 2.3 cm long for a total area of 4.6 cm?®.

2




IFiloII!:dit]lﬂindow”uode”Optinize”Font|

iUntitled_)

B

=3

40

E?ﬁ
—-y

gy

sp3l

42

id

il sl

Py

oy

i
il

102

directions).




tutitled_ 1|

IFileJIEdit”Ilndow”nodeHOptmize”FontI jUutitled 1 i

el

Sp

21

T m—
5

£103

sp

103

Figure 5.20. Layout of the logarithmic delay line.(scaled by 30 in both direc-

tions).




CHAPTER 6

SUMMARY OF RESULTS AND FUTURE WORK

This final chapter concludes by summarizing the results of the previ-

ous chapters and providing suggestions for future research.

6.1 Summary

The problem of time-of-flight circuit layout has two unique aspects
which drive a new, yet simple, approach for automatic circuit layout. These
two factors are the highly astigmatic aspect ratio of the circuit elements and
the necessity to route the connecting paths to specified lengths. Despite the
large volume of literature on VLSI layout, this problem is not addressed.

Before any algorithms were developed, preliminary effort was devoted
to the choice of a suitable device placement architecture. After considering sev-
eral potential alternatives, the only viable placement architecture is one based
on placing the elements in parallel rows. Using the connectivity information
provided by the short connections, it is possible to produce an initial placement
which results in a clock period which is within a few percent of the minimum
achieved after iterative improvement.

One major advantage of integrated-optic circuit layout over VLSI cir-
cuit layout is the fact that optical waveguides can cross other waveguides and
devices at right angles without any negative effect on the signals. This sim-

plified the routing algorithms considerably. The connections have essentially
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unrestricted usage of the chip space, provided that they do not overlap or coin-
cide with each other. After establishing a regular track grid and a connecting
path data structure, the paths are routed in a straightforward manner. Finally,
by taking advantage of path variability, any potential overlapping of paths is
resolved by shifting a segment of one path around the other path, usually with-
out any change in the path length and clock period. If a path has no variability,

then it is simply extended past the other path and the delays are redistributed

with little or no effect on the clock period.

6.2 Results

This work shows it is possible to automatically generate a layout of
a synchronized, integrated-optic, time-of-flight circuit with no user interven-
tion. The user can choose from several different options in search of the most
desirable layout. If a minimum clock period is the goal, the user can use ei-
ther a full or partial circuit graph representation from which to perform the
placement. There is also the choice between placing the left child or the right
child first, while traversing of the circuit graph in the placement phase. Most
noteworthy, is the observation that all of these options produce layouts whose
minimum clock period varies less than 6 % between any two layouts. If the
circuit must be synchronized with a specified clock period, then so long as the
specified clock period is greater than the minimum, any option which allows

the connections to be routed without changing the clock period is acceptable.

6.3 Areas for Further Study
(a) The use of a grid-based track system, results in path lengths which

may deviate as much as the width of a track from the desired length.
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Though this difference is very small, percentage wise, it may be possible
to use a different conflict identification and avoidance scheme which
does not rely on a grid-based track scheme, which would allow routing
the path to the exact length.

The main problem with the tool is that it is not possible to directly
determine the minimum clock period either analytically from the loop
equations or from the initial placement. Only after trying several dif-
ferent placement options can the user select one which provides the
best clock period. Also, the option which produces the best clock pe-
riod for one circuit is not guaranteed to produce the best for another
circuit. The tool should be modified to test the various placement op-
tions automatically and then use the desired placement for the final
layout.

Currently, once a particular set of chip and device parameters are cho-
sen, the spacing and thus the number of tracks between rows is fixed.
However, the number of tracks needed between rows is not constant.
Depending on the length of the paths, there may be a need for more or
less tracks between any pair of rows. By scanning through the horizon-
tal tracks, it is possible to identify empty tracks which can be removed
to reduce the width of a channel. Likewise, it is possible to determine
which tracks are fully occupied and thus identify those channels which
could benefit from being widened. After the horizontal channels are
adjusted, it is a simple matter to adjust the vertical position of the

devices accordingly.
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As seen in the logarithmic delay line, at least two paths are longer
than a meter. An off-chip fiber delay line may be less lossy than the
multitude of corner turning mirrors which are required for the on-chip
connection. If this is the case, the program should be altered to flag
these long paths and create two I/O paths to route the path off and
back onto the chip.

Currently, the task of resolving conflicts for minimal impact on the
clock period results in the repositioning of just the vertical path seg-
ments. There may be occasions where the optimal resolution of a
conflict would require the repositioning of both horizontal and vertical
segments. These situations are currently ignored under the assump-
tion that changes in placement have a much greater effect on the overall
layout than the small alterations on path length resulting from the res-
olution of a conflict. However, this option may need investigation in
the future.

Currently, the number of random vertical tracks is so few that it is un-
likely that they may end up closer than the waveguide spacing. How-
ever, for larger circuits this may become a problem requiring a full set
of vertical tracks all across the chip or some method to check the rel-
ative distance between random tracks to ensure their spacing is large
enough.

The I/O demands for the circuits laid out in Chapter Five are minimal.
The counter and the sorter both had one input whose path was routed
directly to the edge of the chip. The logarithmic delay line had one

laser input and two outputs. However, if the chip is to be one of several
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in a system, the I/O paths need to be considered more carefully. The
use of a managed set of I/O ports as discussed in Chapter Two may
be necessary.

Also, it was assumed that the layout of the electronic circuits for driv-
ing the control inputs to the switches can be done far more easily than
the layout of the integrated-optic chip. However, the placement of the
optical detectors depends on the placement of switches and the position
of the control input and will need some consideration before full-scale
system integration.

Finally, one by four splitters must be manually converted to three, one
by two splitters. The manual changing of the circuit is tedious and

error prone and should be done automatically.
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APPENDIX A
THE CONNECTION TYPE DATA

The following tables show the constants established for every possible

path in the layout.

Table A.1: The path dependent constants for the left-edge start position.
Start: LE Target

LE [ LS | Li-L [ Li-R [ Ri-L | Ri-R [ RS | RE
4 2

Type
Points
Basic Ext.
Basic Slides
First SI. Pt
Sec. Sl. Pt.
Desig. Pt
Track

Hwlololol ooy wx

| w| ool oo

Hlwlolo o~ oo

Hiw olo]o| oo ot

Hlw| oo | ot

= O OOl O | >

6
1
1
3
0
3
T

- ololo|of
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Table A.2: The path dependent constants for the left-side start position.

Start: LS Target

LE [ LS | Li-L j Li-R [ Ri-L l Ri-R I RS ] RE
Type 4 | 3 1 6 1 6 1 6
Points 4 4 6 6 6 6 6 6
Basic Ext. 0 1 2 1 2 1 2 1
Basic Slides || 0 1 1 1 1 1 2 1
First SI. Pt || O 1 1 1 1 1 1 1
Sec. SI. Pt. || O 0 0 0 0 0 3 0
Desig. Pt 1 1 3 3 3 3 3 3
Track F | F T T T T T | T

Table A.3. The path dependent constants for the left-inner-left start position.

Start: Li-L Target

LE ] LS I Li-L ] Li-R [ Ri-L ] Ri-R | RS [ RE
Type 6 | 1 3 4 2 5 2 5
Points 6 6 4 4 6 6 6 6
Basic Ext. 1 2 1 0 1 0 1 0
Basic Slides || 0 1 0 0 0 0 1 0
First S. Pt || 0 | 3 0 0 3 0 3 0
Sec. Sl. Pt. 0 0 0 0 0 0 0 0
Desig. Pt 3 | 3 1 1 3 3 3 3
Track T T F F T T T | T

Table A.4: The path dependent constants for left-inner-right start position.

Start: Li-R Target

LE I LS I Li-L | Li-R | Ri-L [ Ri-R ] RS ] RE
Type 5 | 2 4 3 1 6 1 6
Points 6 6 4 4 6 6 6 6
Basic Ext. 0 1 1 0 2 1 2 1
Basic Slides || 0 1 0 0 0 0 1 0
First SI. Pt || 0 | 3 0 0 0 0 3 0
Sec. SLPt. || 0 | O 0 0 0 0 0 0
Desig. Pt 3 |3 1 1 3 3 3 3
Track T | T F F T T T | T
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Table A.5. The path dependent constants for the right-inner-left start position.

Start: Ri-L

Target

TE LS |LiL | LiR | Ri-L | Ri-R | RS | RE

Type

1

Points

Basic Ext.

Basic Slides

First SI. Pt

Sec. Sl. Pt.

Desig. Pt

Track

Hwlojo|lol—|o|lo

6
2
1
3
0
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Table A.6. The path dependent constants for the right-inner-right start posi-

tion.

Start: Ri-R

Target

LE [ LS [LiL | Li-R | Ri-L | R-R | RS | RE

Type

5

2

4

3

1

Points

Basic Ext.

Basic Slides

First Sl. Pt

Sec. SI. Pt.

Desig. Pt

WOOO| OO O

WO =] =B

W OIO(ojolom

W OW O~

HIOIO| OO

HIOIO| O] i

W OIW[ =N
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Table

A.7: The path dependent constants for the right-side start position.

Start: RS

Target

LE [LS[LiL [ LiR | Ri-L | Ri-R | RS | RE

Type

1

4

Points

Basic Ext.

Basic Slides

First Sl. Pt

Sec. Sl. Pt.

Desig. Pt

Track

H|w| O k=] == os| o
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Table A.8: The path dependent constants for the right-edge start position.

Start: RE Target

LE l LS | Li-L | Li-R [ Ri-L | Ri-R [ RS ] RE
Type 5 | 2 5 2 S 2 4 4
Points 6 6 6 6 6 6 4 4
Basic Ext. 0 1 0 1 0 1 0 0
Basic Slides || 0 1 0 0 0 0 0 0
First S1. Pt || 0 3 0 0 0 0 0 0
Sec. SI. Pt. || 0O 0 0 0 0 0 0 0
Desig. Pt 3 3 3 3 3 3 1 1
Track T | T T T T T F F
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APPENDIX B
THE SCHEMATIC OF THE LOGARITHMIC DELAY LINE

The following figures show the circuit schematic of the logarithmic

delay line.
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Figure B.1: Input to the logarithmic delay line.
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Figure B.2: The main circuit of the logarithmic delay line.
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Figure B.3: Subcircuit 1.
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Figure B.5: Subcircuit 3.
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Figure B.6: Subcircuit 4.
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Figure B.8: Subcircuit 6.
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Entire Layout of the Logarithmic Delay Line

Figure 5.21
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